Dortmunder Initiative zur rechnerintegrierten Fertigung (RIF) e. V.

Name der Forschungsstelle: Dortmunder Initiative zur rechnerintegrierten Fertigung (RIF) e. V.

AiF-Vorhaben-Nr. 14368 N

Bewilligungszeitraum: 01.04.2005 bis 31.03.2007

Endbericht für den Zeitraum: 01.04.2005 bis 31.03.2007

zu dem aus Haushaltsmitteln des BMWi über die geförderten Forschungsvorhaben

Forschungsthema:

Optimierung von Kommissionierung und Verpackung durch geeignete Strategien für die Qualitätsprüfung unter Berücksichtigung der Retourenabwicklung

Forschungsstelle:
Dortmunder Initiative zur rechnerintegrierten Fertigung (RIF) e. V.

Prof. Dr.-Ing. H.-A. Crostack / Prof. Dr.-Ing. J. Deuse
Joseph-von-Fraunhofer Str. 20, 44227 Dortmund

Das Projekt wurde bearbeitet von
Dipl.-Ing. Dipl.-Wirt.-Ing. C. Goldscheid / Dipl.-Logist. N. Schlüter

Dortmund, den 13.07.2007

Ort, Datum

Unterschrift der Projektleiter
Veröffentlichungen zum Forschungsvorhaben

Veröffentlichungen

Tagungen, Messen und sonstige Veröffentlichungen

- Internetveröffentlichung auf http://www.quinkom.de

- Veröffentlichungen von Ergebnissen bei Treffen des Projektbegleitenden Ausschusses am 11.05.2006 und 05.07.2007

Geplante Veröffentlichungen

- Weitere Veröffentlichungen in den Zeitschriften wie QZ, Logistik Heute, Logistik für Unternehmen, etc.
Inhaltsverzeichnis

1 Einleitung ... 1
 1.1 Wissenschaftlich-technische und wirtschaftliche Problemstellung .. 1
 1.2 Forschungsziel ... 2
 1.3 Arbeitsschritte .. 2
 1.4 Zusammenfassung ... 6

2 Grundlagen .. 7
 2.1 Informationssystem .. 8
 2.1.1 Auftragserfassung .. 9
 2.1.2 Auftragsaufbereitung ... 10
 2.1.3 Auftragsbereitstellung .. 11
 2.1.4 Identifikation des Bereitstellortes und des Auftrages .. 15
 2.1.5 Kontrolle und Quittierung ... 15
 2.1.6 Identifikation des Abgabeortes .. 15
 2.2 Materialflusssystem .. 16
 2.2.1 Transport der Güter zur Bereitstellung .. 17
 2.2.2 Bereitstellung ... 17
 2.2.3 Bewegung des Kommissionierers zur Bereitstellung .. 18
 2.2.4 Entnahme der Güter durch den Kommissionierer .. 19
 2.2.5 Transport der Güter zum Abgabeort .. 19
 2.2.6 Abgabe ... 19
 2.2.7 Rücktransport der angebrochenen Ladeeinheiten ... 20
 2.3 Organisationssystem ... 20
 2.3.1 Aufbauorganisation .. 21
 2.3.2 Ablauforganisation ... 21
 2.3.3 Betriebsorganisation .. 23

3 Strukturierung der Handhabungs- und Prüfprozesse für Kommissionierung und Verpackung ... 24
 3.1 Prozessmodell der Kommissionierung und Verpackung .. 24
 3.1.1 Kommissionierprozess .. 24
 3.1.2 Teilprozesse der Kommissionierung ... 27
 3.1.3 Verpackungsprozess .. 36
 3.1.4 Teilprozesse der Verpackung .. 37
 3.2 Prüfprozesse .. 42
Inhaltsverzeichnis

4 Ermittlung von Zeiten, Kosten, Auftretens- und Entdeckungswahrscheinlichkeiten....... 48
 4.1 Zeitermittlung in der Kommissionierung und Verpackung .. 48
 4.1.1 Allgemeine Methoden zur Prozesserfassung .. 48
 4.1.2 Anwendung der MTM-Verfahren zur Zeitermittlung .. 50
 4.1.3 MTM-Logistikdaten .. 54
 4.2 Ermittlung der qualitätsrelevanten Kosten ... 55
 4.2.1 Qualitätsbezogene Kosten ... 57
 4.2.2 Fehlervermeidungskosten .. 59
 4.2.3 Fehlererkennungskosten .. 61
 4.2.4 Fehlerbehebungskosten .. 63
 4.2.5 Opportunitätskosten .. 66
 4.2.6 Berücksichtigung der qualitätsbezogenen Kosten bei der Optimierung der Qualitätsprüfung .. 67
 4.3 Fehler in Kommissionierung und Verpackung ... 67
 4.3.1 Klassifizierung von Fehlern in Kommissionierung und Verpackung 67
 4.3.2 Untersuchung der Kommissionier- und Verpackungsprozesse 76
 4.3.3 Fehlerbeeinflussende Faktoren in der Kommissionierung und Verpackung 88
 4.4 Ermittlung von Fehlhandlungswahrscheinlichkeiten anhand geeigneter Verfahren 94
 4.4.1 Verfahren zur Fehleranalyse .. 95
 4.4.2 Analyse und Bewertung der menschlichen Zuverlässigkeit 104
 4.4.3 Vorgehensweise zur Ermittlung von Fehlhandlungswahrscheinlichkeiten 124
 4.5 Qualitätsprüfung in Kommissionierung und Verpackung ... 143
 4.5.1 Zeit- und Kostenermittlung bei der Qualitätsprüfung ... 143
 4.5.2 Ermittlung der Entdeckungswahrscheinlichkeit ... 145
 5 Prozessmodell für die Retourenabwicklung .. 158
 5.1 Begriffsdefinitionen .. 158
 5.2 Das Prozessmodell der Retourenabwicklung .. 159
 5.2.1 Vor Rücklieferung der Ware .. 160
 5.2.2 Rücklieferung der Ware .. 163
 5.2.3 Bearbeitung der Rücklieferung ... 164
 5.2.4 Überprüfung der Retoure .. 169
 5.2.5 Weiterverwendung der zurückgesendeten Ware ... 172
 5.2.6 Reklamation ohne Rücklieferung der Ware (Retoure ohne physische Rücklieferung) 177
 6 Ermittlung von Kostentreibern und Kosten sowie Ableitung von Kennzahlen 182
 6.1 Einsatz der Prozesskostenrechnung zur Erhöhung der Kostentransparenz 182
 6.2 Vorgehensweise bei der Kostenermittlung ... 186
6.3 Prozesskostenrechnung in der Kommissionierung ... 196
6.4 Kostenermittlung in der Retourenabwicklung ... 204

7 Entwicklung eines Simulationsmodells zur Prüfplanung ... 206
7.1 Simulationsgerechte Beschreibung des Referenzmodells .. 206
 7.1.1 Art der Prüfung .. 207
 7.1.2 Zeitpunkt der Prüfung ... 207
 7.1.3 Prüfumfang .. 209
 7.1.4 Prüfort .. 210
 7.1.5 Prüfmittel ... 211
7.2 Auswahl des geeigneten Simulationswerkzeugs ... 214
 7.2.1 Unterschiedliche Arten der Simulation .. 215
 7.2.2 Simulationstool ARENA ... 218

8 Durchführung von Simulationen ... 220
8.1 Erstellen des Simulationsmodells .. 220
 8.1.1 Die Prüf- und Kommissioniermenüs ... 220
 8.1.2 Erzeugung von Aufrägen und Positionen ... 222
 8.1.3 Auswertung .. 223
 8.1.4 Abbildung von Prozessketten ... 225
 8.1.5 Simulationsergebnisse ... 227
8.2 Erhebung von Daten anhand des Datenerhebungsbilds ... 229
 8.2.1 Datenerhebungsbild .. 229
 8.2.2 Probleme der Datenerhebung .. 232
8.3 Erstellen von Simulationsvarianten .. 233

9 Nachweis der Wirtschaftlichkeit .. 237
9.1 Aufwand der qualitativ Betrachtungsweise ... 237
9.2 Nutzen der qualitativ Betrachtungsweise ... 238
9.3 Einfluss der Prüfstrategien auf die Qualität ... 239
9.4 Einfluss der Prüfstrategien auf die Kosten .. 240
9.5 Wirtschaftlichkeit ... 245
Abbildungsverzeichnis

Abbildung 1: Kommissionier- und Prüfprozesse mit ihren Kenngrößen _____________________ 3
Abbildung 3: Teilsysteme der Kommissionierung und ihre Einbindung in das Unternehmen (nach Lolling 2003, S. 7) __________________________ 8
Abbildung 5: Kommissionierung mit Pick-by-voice (Diamond Phoenix 2005) ______________ 13
Abbildung 6: Regal mit aktiven Fachanzeigen (Pick-by-light) (KBS 2005) _______________ 14
Abbildung 7: Numerische Fachanzeige mit großer, dreistelliger Mengenanzeige (KBS 2005) ______ 14
Abbildung 11: Teilprozess „Bereitstellung“ (Menk 1998, S. 148) ______________________ 28
Abbildung 12: Teilprozess „Auftragsannahme“ (Menk 1998, S. 148) ____________________ 29
Abbildung 13: Teilprozess „Fortbewegung zur Entnahme“ (Menk 1998, S. 149) ___________ 30
Abbildung 14: Teilprozess „Entnahme“ (Menk 1998, S. 149) _____________________________ 31
Abbildung 15: Teilprozess „Kontrolle und Quittierung“ (Menk 1998, S. 150) ______________ 33
Abbildung 16: Teilprozess „Fortbewegung zur Abgabe“ (Menk 1998, S. 150) ______________ 34
Abbildung 17: Teilprozess „Abgabe“ (Menk 1998, S. 151) _______________________________ 35
Abbildung 18: Teilprozess „Sortierung“ (Menk 1998, S. 151) ___________________________ 36
Abbildung 19: Teilprozesse der Verpackung (in Anlehnung an Menk 1998, S. 152) ___________ 37
Abbildung 20: Teilprozess „Packmittel vorbereiten“ ________________ ______________ 38
Abbildung 21: Teilprozess „Ware schützen“ ___ 38
Abbildung 22: Teilprozess „Ware einpacken“ __ 39
Abbildung 23: Teilprozess „Inneneinrichtung verwenden“ ________________________________ 39
Abbildung 24: Teilprozess „Beipackteile einbringen“ ______________________________________ 40
Abbildung 25: Teilprozess „Packmittel nachbereiten“ ____________________________________ 40
Abbildung 26: Teilprozess „Packmittel kennzeichnen“ ___________________________________ 41
Abbildung 27: Teilprozess „Packstück bereitstellen“ _____________________________________ 41
Abbildung 28: Ablauf der Festlegung der Prüfstrategie _______________________________ 42
Abbildung 29: Identifizierung der Forderungen an die Prüfstrategien ______________________ 43
Abbildung 30: Arten der Prüfung __ 47
Abbildung 32: Anwendung und Bekanntheitsgrad unterschiedlicher SvZ-Verfahren (Westkämper und Sautter 1998, S. 47) ____________________________ 50
Abbildung 33: Übersicht der Datensysteme des MTM-Verfahrens ________________________ 50
Abbildung 34: MTM-Datenkonzept (Ausschnitt) (MTM 2000b) __________________________ 52
Abbildungsverzeichnis

Abbildung 35: Differenz zwischen Arbeitsmethode und Arbeitsweise (MTM 2000b) 52
Abbildung 36: Methode zur qualitativen Bestimmung des Methodenniveaus (in Anlehnung an Becks 1993, S. 262) 53
Abbildung 38: Traditionelle Kostengliederung und neue Kostengliederung (Wildemann04) 57
Abbildung 39: Dreiteilung der qualitätsbezogenen Kosten in Kostengruppen 58
Abbildung 40: Fehlerarten in der Kommissionierung (Lolling 2003, S. 28) 68
Abbildung 41: Einflussfaktoren für die zuverlässige Erledigung einer Arbeitsaufgabe (in Anlehnung an Zimolong 1990, S. 318; Dörfel und Reichart und Zimolong 1992, S. 90) 76
Abbildung 42: Beispiele für strukturierte (links) und unstrukturierte (rechts) Beleggestaltung (vgl. Lolling 2003, S. 58) 91
Abbildung 45: Vorgehensweise zur Erstellung einer FMEA (in Anlehnung an Pfeifer 2001, S. 399) 100
Abbildung 46: Teilfehlerbaum für Typfehler (vgl. Lolling 2003, S. 37) 102
Abbildung 48: Beispiel HRA Event Tree (nach Reichart 2001, S. 25) 111
Abbildung 50: Skala der Zuverlässigkeitsklassen und die zugehörigen HEP-Werte (nach Brauser 1992, S. 127) 124
Abbildung 51: Vorgehensweise zur Ermittlung von Fehlhandlungswahrscheinlichkeiten 125
Abbildung 52: Risikoanalyse und Risikobewertung 133
Abbildung 53: Bewertung der Fehlerursachen nach Fehlerarten 134
Abbildung 54: Zusammenfassung der Vorgehensweise zur Ermittlung von Fehlhandlungswahrscheinlichkeiten 142
Abbildung 55: Ablauffolgegliederung für Prüftätigkeiten in der Kommissionierung 143
Abbildung 56: Zusammenhang zwischen der Kommissionierung und der Prüfung (abgeleitet nach Nusswald [Nusswald98]) 146
Abbildung 57: Gesamtprozess der Retourenabwicklung 160
Abbildung 58: Teilprozesse des Prozesses „Vorbereiten und Auslösen der Retoure“ 160
Abbildung 59: Rücklieferung der Ware 163
Abbildung 60: Rücklieferung der Ware 164
Abbildung 61: Teilprozesse der Reklamation bei Auslieferung 165
Abbildung 62: Teilprozesse der Rücklieferung der Ware 168
Abbildung 63: Teilprozesse der Rücklieferung zu viel gelieferter Ware 169
Abbildung 64: Überprüfung der Retoure 169
Abbildung 65: Teilprozesse bei der Überprüfung der Retourengründe 170
Abbildung 66: Teilprozesse von der Rechnungskorrektur beim Kunden 172
Abbildung 67: Weiterverwendung der Ware 173
Abbildungsverzeichnis

Abbildung 68: Teilprozesse des Prozesses Weiterverwendung der Ware __________________ 173
Abbildung 69: Retoure ohne Rücklieferung ________________________________ 178
Abbildung 70: Direkte und indirekte Unternehmensbereiche (nach Müller, S.18) _____________ 183
Abbildung 71: Gegenüberstellung von traditionellem und prozessorientiertem Wertefluss (vgl. Heinz 1997, S.47) ________________________________ 184
Abbildung 73: Zehn-Stufen-Modell zur Darstellung der Vorgehensweise in der Prozesskostenrechnung (in Anlehnung an VDI 4405 2003 Blatt 1, S. 10) _____________ 188
Abbildung 74: Berechnungstableau in der Prozesskostenrechnung (in Anlehnung an VDI 4405 Blatt 2 2003, S. 8) ______________________________ 190
Abbildung 75: Funktionen der Kostentreiber (vgl. Müller 1998, S. 131) ____________________ 190
Abbildung 76: Ermittlung der Teilprozess-Einzelzeiten, die je Maßgröße benötigt werden (in Anlehnung an VDI 4405 Blatt 2 2003, S. 8) ______________________________ 191
Abbildung 77: Berechnung der Teilprozess-Gesamtzeit und der leistungsmengeninduzierten Gesamtkosten (in Anlehnung an VDI 4405 Blatt 2 2003, S. 8) _____________ 192
Abbildung 78: Berechnung der leistungsmengeninduzierten Prozesskosten (in Anlehnung an VDI 4405 Blatt 2 2003, S. 8) ______________________________ 193
Abbildung 79: Berechnung der leistungsmengenneutralen Prozesskosten (in Anlehnung an VDI 4405 Blatt 2 2003, S. 8) ______________________________ 194
Abbildung 80: Zuordnung der Teilprozesse und Kostentreiber im Rahmen der Berechnung der Prozesskostensätze _____________ 199
Abbildung 81: Zuordnung der Prozessmengen, Gesamtkosten sowie lmn/lmi – Gesamtkosten (Bezugsperiode 1 Jahr) ________________________________ 200
Abbildung 82: Ermittlung der Teilprozesszeiten und der Gesamtprozesszeit je Arbeitstag _____________ 201
Abbildung 83: Prozesskosten- und Prozesskostensatzberechnung _____________ 202
Abbildung 84: Abhängigkeit der Prozesskostensätze von Auftragsstruktur und – grösse _____________ 203
Abbildung 85: Festlegung des Prüfzeitpunktes ______________________________ 208
Abbildung 86: Festlegung des Prüfumfangs _____________ 209
Abbildung 87: Festlegung des Prüforts ______________________________ 210
Abbildung 88: Abbildung der Prüf- und Kommissioniermenüs in ARENA ________________________________ 220
Abbildung 89: Abfragefenster Kommissioniermenü ________________________________ 221
Abbildung 90: Abfragefenster Prüfmenü ______________________________ 221
Abbildung 91: Weiterführende Abfragefenster zum Prüfgerät ________________________________ 222
Abbildung 92: Erzeugung von Auftragsstrukturen mittels Zufallsvariablen _____________ 223
Abbildung 93: Erster Teil der Auswertung ______________________________ 224
Abbildung 94: Zweiter Teil der Auswertung ______________________________ 225
Abbildung 95: Objekt zur Darstellung des Prozessschrittes „Entnahme des Artikels“ ________________________________ 226
Abbildung 96: Abbildung eines Fallbeispiels in ARENA ________________________________ 226
Abbildung 97: Report aus ARENA ______________________________ 227
Abbildung 98: Menge an Fehlerarten je 1000 Auftragspositionen _____________ 228
Abbildung 99: Angabe der Prozesszeiten in Sekunden ________________________________ 229
Abbildung 100: Variante 1 ______________________________ 233
Abbildungsverzeichnis

Abbildung 101: Variante 2 234
Abbildung 102: Variante 3 235
Abbildung 103: Variante 4 235
Abbildung 104: Variante 5 236
Abbildung 105: Kostensätze der Teilprozesse von Variante 1 des simulierten Kommissioniersystems 241
Abbildung 106: Kostensätze der Teilprozesse von Variante 2 des simulierten Kommissioniersystems 242
Abbildung 107: Kostensätze der Teilprozesse von Variante 3 des simulierten Kommissioniersystems 243
Abbildung 108: Kostensätze der Teilprozesse von Variante 4 des simulierten Kommissioniersystems 244
Abbildung 109: Kostensätze der Teilprozesse von Variante 5 des simulierten Kommissioniersystems 244
Abbildung 110: Vergleich der simulierten Varianten hinsichtlich Qualität und Kosten 246
Tabellenverzeichnis

Tabelle 1: Formen unterschiedlicher Kommissionieraufträge (in Anlehnung an Pieper 1982, S. 35) 10
Tabelle 2: Möglichkeiten der Informationsbereitstellung in der Kommissionierung (nach Lolling 2003, S. 14) ... 12
Tabelle 3: Morphologische Darstellung des Informationssystems (in Anlehnung an VDI 3590 1994, S. 5; Lolling 2003, S. 13) ... 16
Tabelle 4: Morphologische Darstellung des Materialflussystems (vgl. VDI 3590 1994, S. 6) 20
Tabelle 5: Morphologische Darstellung des Organisationssystems (vgl. VDI 3590 1994, S. 6) 23
Tabelle 6: Freiheitsgrade bei der Identifikation des Bereitstellortes ... 44
Tabelle 7: Darstellung potentieller Prüfmittel ... 45
Tabelle 8: Fehlerwahrscheinlichkeiten (HEP) für die Tätigkeit in Kernkraftwerken (vgl. Ebd.) 71
Tabelle 9: Auftretensorientierte Fehlerklassifikation (nach Swain und Guttmann 1983, S. 2-16)..... 73
Tabelle 10: Einflüsse auf das Fehlen oder auf Nutzungsmängel handlungs-regulierender Information (vgl. Hacker 1986, S. 424 ff) ... 74
Tabelle 11: Potenzielle Fehler bei der Bereitstellung (vgl. Heinz und Menk 1997, S. A-1 ff) ... 79
Tabelle 15: Potenzielle Fehler bei der Kontrolle und Quittierung (vgl. Heinz und Menk 1997, S. A-1 ff) ... 85
Tabelle 16: Potenzielle Fehler bei der Fortbewegung zur Abgabe (vgl. Heinz und Menk 1997, S. A-1 ff) ... 86
Tabelle 19: Eignung der Verfahren zur Analyse und Darstellung von Fehlern 104
Tabelle 23: Zusammenstellung benutzter Informationsquellen, -träger und Bediengeräte (Ebd) ... 116
Tabelle 24: Bestandteile des Belastungsvektors (vgl. Brauser 1990a, S. 5) 117
Tabelle 25: Schematische Berechnung der relativen Zeitanteile der Unterkomponenten von PSF (Ebd.) ... 118
Tabelle 26: Schematische Erläuterung der Gewichtungsmethode für Einflussfaktoren (1) (nach Brauser 1990a, S. 39 f) ... 121
Tabellenverzeichnis

Tabelle 27: Schematische Erläuterung der Gewichtungsmethode für Einflussfaktoren (2) (nach Brauser 1990a, S. 40) ... 122
Tabelle 30: Bewertung der Entdeckungswahrscheinlichkeit (vgl. Heinz und Menk 1997, S. 130) ... 131
Tabelle 31: Aufschlüsselung der Fehlerquote nach Fehlerursache .. 134
Tabelle 33: Kostenangaben zum Kommissioniersystem .. 197
Tabelle 34: Beispielhafter Vergleich der Prüfmaßnahmen: ... 211
Tabelle 35: Prüfmaßnahmen – Zuordnung der Fehlerarten .. 213
Tabelle 36: Kosten für die Implementierung ... 238
Tabelle 37: Interne und Externe Fehlerquoten der Varianten .. 239
1 Einleitung

1.1 Wissenschaftlich-technische und wirtschaftliche Problemstellung

Aufgrund gegenläufiger Ziele und Effekte (erhöhte Prüfkosten, verlängerte Durchlaufzeiten) bedarf es einer an den Kommissionier- und Verpackungsablauf und die verwendeten Technologien angepassten Prüfplanung, die nicht intuitiv erfolgen darf, sondern Prüfmethode, Prüfart, Prüfzeitpunkt, Prüfort und Prüfumfang systematisch festlegen muss. Während in anderen Bereichen, z. B. in der Teilefertigung, die Qualitätslage und die Wirtschaftlichkeit durch den Einsatz einer
Einleitung

 qualitätsorientierten Simulation verbessert werden konnte [s. AiF-Nr. 13208], sind bislang für Kommissionierung, Verpackung und Retourenabwicklung keine vergleichbaren Ansätze bekannt. Eine ganzheitliche Optimierung der Prüfplanung in Kommissionierung und Verpackung ist weiterhin nur dann möglich, wenn die Kosten zur Behebung von Fehlern bekannt sind. Daher ist neben der Verpackung und der Kommissionierung auch die Retourenabwicklung in die Betrachtung mit einzubeziehen.

1.2 Forschungsziel

Das Ziel des hier dokumentierten Vorhabens war die Erstellung eines ganzheitlichen Referenzmodells zur Auswahl einer geeigneten Prüfstrategie für Kommissionierung und Verpackung und zur betriebsspezifischen Bewertung nach Qualität, Kosten und Durchlaufzeit. Dieses umfasst:

- ein Prozessmodell zur Abbildung der Kommissionier- und Verpackungsprozesse mit den Auftretenswahrscheinlichkeiten für die Fehlerarten sowie zur Abbildung der Prüfprozesse mit den zugehörigen Entdeckungswahrscheinlichkeiten sowie

- ein Prozessmodell zur Abbildung der Retourenabwicklung und zur Ermittlung der Kosten (Zeiten, Nacharbeiten, Korrekturen) in Abhängigkeit von der Kommissionierqualität (interne und externe Fehler (Durchschlupf)).

Für die Simulation ist das Referenzmodell in ein Simulationsmodell überführt worden, welches die formalen Anforderungen der Simulationssoftware erfüllt.

Erreicht wurden die Ziele in folgenden Arbeitsschritten:

1.3 Arbeitsschritte

1. Handhabungs- und Prüfprozesse für die Kommissionierung und die Verpackung strukturieren

Ziel des Arbeitsschrittes war es, aus eigenen Vorarbeiten vorhandene Prozessmodelle zur Kommissionierung und zur Verpackung zu vereinheitlichen und

2. **Zeiten, Kosten, Auftretens- und Entdeckungswahrscheinlichkeit der Fehlerarten ermitteln**

Für alle Teilprozesse des im ersten Schritt erstellten Prozessmodells sind Zeiten, Kosten sowie Wahrscheinlichkeiten für Fehlhandlungen und deren Entdeckung ermittelt worden. Hierzu sind für jeden Teilprozess die relevanten Einflussgrößen ermittelt und für die jeweiligen Ausprägungen der Einflussgrößen die Zeiten, die Kosten und die Fehlhandlungswahrscheinlichkeiten bestimmt worden.

Neben der kostenseitigen Bewertung eines Teilprozesses wurde jedem Kommissionier- oder Verpackungsprozess weiterhin eine Fehlhandlungswahrscheinlichkeit und jedem Prüfprozess eine Entdeckungswahrscheinlichkeit zugeordnet. Für die Ermittlung der Entdeckungswahrscheinlichkeit der jeweiligen Prüfprozesse wurden Expertenbeurteilungen genutzt.

Abbildung 1: Kommissionier- und Prüfprozesse mit ihren Kenngrößen
3. **Prozessmodell für die Retourenabwicklung und der Fehlerfolgekosten erstellen**

4. **Kostentreiber und Kosten ermitteln sowie Kennzahlen ableiten**

5. **Simulationsmodell zur Prüfplanung entwickeln**

Mit den zuvor genannten Arbeitspunkten ist ein Referenzmodell erarbeitet, das alle relevanten Informationen beinhaltet, um komplexe Prozessketten zu Kommissionierung und Verpackung sowie zur Retourenbehandlung, einschließlich geeigneter Prüfprozesse, abbilden zu können. Darauf aufbauend wurden die einzelnen Teilmodelle des Referenzmodells in eine simulationsgerechte Beschreibung überführt, um die somit definierten Simulationsobjekte in einem geeigneten Simulationswerkzeug implementieren zu können.
Die Auswahl eines für die hier zu bearbeitenden Aufgaben geeigneten Simulationswerkzeugs wurde als ein notwendiger Arbeitsschritt verstanden, wobei die Bewertung von Vor- und Nachteilen, die mit den auszuwählenden Werkzeugen verbunden ist, in Zusammenarbeit mit dem vorgesehenen Arbeitskreis aus Industrievertretern erfolgte. Dadurch wurde sichergestellt, dass auch andere Werkzeuge nicht prinzipiell für den Einsatz ausgeschlossen wurden und die erarbeiteten und in dem Referenzmodell beschriebene Vorgehensweise mit Hilfe einer breiten Plattform in der Industrie umgesetzt werden kann.

6. Simulationen durchführen und Prüfstrategien in Unternehmen ableiten

Neben der Behandlung von Standardabläufen war eine direkte Zusammenarbeit mit Teilnehmern des Arbeitskreises vorgesehen, um eine Validierung der Ergebnisse durchzuführen. Hierbei war die Zusammenarbeit mit den Unternehmen von
Bedeutung, um den Nachweis der tatsächlichen Durchführbarkeit und des erbrachten Nutzens an realen Beispielen führen zu können.

1.4 Zusammenfassung

Durch die Prüfstrategien wird festgelegt, WAS (Merkmal), WOMIT (Prüfmittel/Prüfmethode), WIEVIEL (Prüfumfang), WANN (Prüfzeitpunkt) und WO (Prüfort) im Rahmen der Kommissionierung geprüft werden soll. Werden für jeden dieser Punkte alle Möglichkeiten aufgestellt und hinsichtlich der Zielgrößen Qualität, Kosten und Durchlaufzeit gegeneinander bewertet, führt dies zu einem Aufwand, den in der Praxis aus Zeitgründen kein Prüfplaner betreiben kann.

Daher wurde im Rahmen dieses BVL-Projektes das Programmsystem QUINKOM (Qualität in der Kommissionierung) entwickelt, mit dessen Hilfe die Prüfplanung aufwandsarm optimiert werden kann. Der vorliegende Endbericht dokumentiert die Projektergebnisse und liefert erste praktische Anwendungserfahrungen.

In der Folge können die unternehmensspezifisch optimierten Prüfstrategien ausgewählt werden. Für die Simulation wurde das angewendete Simulationstool ARENA um nötige Komponenten im Bereich der Modellierung umfassend erweitert. Zum einen wurden zusätzliche Module zur Abbildung von Kommissionier- und Prüfprozessen erstellt. Zum anderen wurde eine Auswertungslogik hinterlegt, die eine Auswertung der Simulationsvarianten mittels generierter Reports ermöglicht.

Das Programmsystem konnte erfolgreich eingesetzt und die getroffenen Annahmen bestätigt werden. Das Ziel des Forschungsvorhabens wurde erreicht.
2 Grundlagen

![Diagramm der Kommissionierung](image)

Aufgabe des Informationssystems sind die Auftragserfassung und die Auftragsbearbeitung. Der Materialfluss beschreibt den eigentlichen physischen Ablauf der Kommissionierung. Das Organisationssystem stellt die Struktur und die Steuerung der Abläufe des Kommissioniersystems dar. In den folgenden Abschnitten werden die möglichen Ausprägungen der drei Teilsysteme erläutert.

2.1 Informationssystem

Mit Eingang des Kundenauftrages wird der Informationsfluss (Datenstrom) ausgelöst. Aus den Daten des Kundenauftrages werden ein Kommissionierauftrag oder mehrere Kommissionieraufträge erstellt, wobei jeder Auftrag aus einer Liste mit mindestens einer Position besteht.

2.1.1 Auftragserfassung

Das Erfassen der Kundenaufträge umfasst die Ermittlung aller für einen Auftrag relevanten Daten. Die Ermittlung der Daten kann per Telefon, Post oder Telefax erfolgen. Weiterhin können die Informationen über das Internet übermittelt werden. Bei internen Aufträgen sind die Möglichkeiten der Informationsübertragung vom Beleg (Auftragsschein, Kanban-Karte etc.) bis zum Abruf der Artikel per Lagerverwaltungssystem (LVS) sehr breit gefächert.
2.1.2 Auftragsaufbereitung

<table>
<thead>
<tr>
<th>Kommissionierbeleg</th>
<th>Kommissioniermethode</th>
<th>organisatorische Konsequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommissionierauftrag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kundenauftrag</td>
<td>auftragsorientiertes Kommissionieren</td>
<td></td>
</tr>
<tr>
<td>Teil des Kundenauftrages</td>
<td>paralleles Kommissionieren</td>
<td>Zusammenführung</td>
</tr>
<tr>
<td>interner Sammelauftrag</td>
<td>artikelweises Kommissionieren</td>
<td>Vereinzelung und Zusammenführung</td>
</tr>
</tbody>
</table>

Tabelle 1: Formen unterschiedlicher Kommissionieraufträge (in Anlehnung an Pieper 1982, S. 35)

2.1.3 Auftragsbereitstellung

Informationsbereitstellung

<table>
<thead>
<tr>
<th>beleggebunden</th>
<th>beleglos</th>
</tr>
</thead>
<tbody>
<tr>
<td>mobile Informationsbereitstellung (online oder offline)</td>
<td>stationäre Informationsbereitstellung (online)</td>
</tr>
<tr>
<td>Pickliste (Kommissionierbeleg)</td>
<td>Handheld (tragbares Terminal)</td>
</tr>
<tr>
<td>Lieferschein</td>
<td>Terminal am Fördermittel</td>
</tr>
<tr>
<td>Etikett</td>
<td>Sprachkommissionierung (Pick-by-voice)</td>
</tr>
<tr>
<td>PC</td>
<td>aktive Fachanzeige (Pick-by-light)</td>
</tr>
</tbody>
</table>

Tabelle 2: Möglichkeiten der Informationsbereitstellung in der Kommissionierung (nach Lolling 2003, S. 14)

Vorteilhaft hierbei ist, dass der Kommissionierer zum einen beide Hände frei hat und zum anderen schon während der Quittierung der Entnahme eines Artikels zum nächsten Entnahmeort gehen kann (siehe Abbildung 5).

Abbildung 5: Kommissionierung mit Pick-by-voice (Diamond Phoenix 2005)

Abbildung 6: Regal mit aktiven Fachanzeigen (Pick-by-light) (KBS 2005)

Abbildung 7: Numerische Fachanzeige mit großer, dreistelliger Mengenanzeige (KBS 2005)
2 Grundlagen

2.1.4 Identifikation des Bereitstellortes und des Auftrages

2.1.5 Kontrolle und Quittierung

2.1.6 Identifikation des Abgabeortes

Die Identifikation des Abgabeortes kann manuell (z. B. durch Ablesen der Abgabeortnummer am Abgabeort), unterstützt (z. B. durch Scannen einer Identnummer am Abgabeort) oder automatisch (z. B. durch automatische Weiterleitung der Kommissionierbehälter) erfolgen.
In Tabelle 3 sind die Bestandteile des Informationssystems nochmals zusammenfassend dargestellt.

<table>
<thead>
<tr>
<th>Vorgang</th>
<th>Realisierungsmöglichkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorbereitung der Kommissionierung</td>
<td></td>
</tr>
<tr>
<td>Auftragsaufbereitung</td>
<td>manuell</td>
</tr>
<tr>
<td>Teilauftrag</td>
<td></td>
</tr>
<tr>
<td>Einzelauftrag</td>
<td></td>
</tr>
<tr>
<td>Auftragsgruppen</td>
<td>keine</td>
</tr>
<tr>
<td>offline</td>
<td>online</td>
</tr>
<tr>
<td>Auftragsbereitstellung</td>
<td>beleglos</td>
</tr>
<tr>
<td>Einzelposition</td>
<td>mehrere Positionen</td>
</tr>
<tr>
<td>Durchführung der Kommissionierung</td>
<td></td>
</tr>
<tr>
<td>Identifikation des Bereitstellortes</td>
<td>manuell</td>
</tr>
<tr>
<td>Quittierung und Kontrolle</td>
<td>findet nicht statt</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifikation des Abgabeortes</td>
<td>findet nicht statt</td>
</tr>
</tbody>
</table>

Tabelle 3: Morphologische Darstellung des Informationssystems (in Anlehnung an VDI 3590 1994, S. 5; Lolling 2003, S. 13)

2.2 Materialflusssystem

Durch das Materialflusssystem werden die physischen Bewegungen von Gütern, Menschen und Arbeitsmitteln im Kommissioniersystem vorgegeben. Innerhalb des Materialflusssystems werden verschiedene Materialflusseinheiten bewegt und gebildet, die im Folgenden definiert werden:

Eine Bereitstelleinheit ist die physische, von der Gesamtmenge abgegrenzte Teilmenge eines Artikels (des Sortiments), die unter Verwendung eines Bereitstellhilfsmittels (z. B. Palette, Ein- oder Mehrwegbehälter) artikelrein mit Gut oder Ware bestückt und so dem Entnahmesystem zur Verfügung gestellt wird [vgl. VDI 3590 1994, S. 3].

Eine Bereitstelleinheit ist die physische, von der Gesamtmenge abgegrenzte Teilmenge eines Artikels (des Sortiments), die unter Verwendung eines Bereitstellhilfsmittels (z. B. Palette, Ein- oder Mehrwegbehälter) artikelrein mit Gut oder Ware bestückt und so dem Entnahmesystem zur Verfügung gestellt wird [vgl. VDI 3590 1994, S. 3].

„Die *Sammeleinheit* ist im Kommissioniersystem diejenige Einheit, die durch Entnahmevorgänge entsteht. Sie kann sowohl aus gleichen als auch aus verschiedenen Artikeln bestehen“ (ebd.).

2.2.1 Transport der Güter zur Bereitstellung

Im Rahmen der Bereitstellung werden dem Kommissionierer die Entnahmemengen zur Verfügung gestellt. Findet ein Transport der Güter zum Bereitstellort statt, kann dieser eindimensional in einer Ebene (z. B. mittels eines Handwagens), zweidimensional (vertikaler und gleichzeitig horizontaler Transport, z. B. mittels Regalbediengerät) oder dreidimensional (Transport im Raum, z. B. mittels eines Kranes) erfolgen. Der Transport kann manuell (z. B. per Handwagen), mechanisch unterstützt (z. B. per Gabelstapler) oder automatisch (z. B. Regalbediengerät) durchgeführt werden [vgl. VDI 3590 1994, S. 5].

2.2.2 Bereitstellung

Die Realisierungsmöglichkeiten der Bereitstellung beschreiben die Form, in der der Kommissionierer die Güter zur Durchführung der Entnahmeprozesse vorfindet. Die Unterscheidung in statisch und dynamisch gibt an, ob die Bereitstelleinheit zur

2.2.3 Bewegung des Kommissionierers zur Bereitstellung

2.2.4 Entnahme der Güter durch den Kommissionierer

2.2.5 Transport der Güter zum Abgabeort

2.2.6 Abgabe

2.2.7 Rücktransport der angebrochenen Ladeeinheiten

Die nachfolgende Tabelle 4 veranschaulicht nochmals die Vorgänge des Materialflussystems und deren Realisierungsmöglichkeiten.

<table>
<thead>
<tr>
<th>Materialflusssystem</th>
<th>Vorgang</th>
<th>Realisierungsmöglichkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bereitstellsystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transport der Güter zur Bereitstellung</td>
<td>findet nicht statt</td>
<td>eindimensional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manuell</td>
</tr>
<tr>
<td>Bereitstellung</td>
<td>statisch</td>
<td>dynamisch</td>
</tr>
<tr>
<td></td>
<td>zentral</td>
<td>dezentral</td>
</tr>
<tr>
<td></td>
<td>geordnet</td>
<td>ungeordnet</td>
</tr>
<tr>
<td>Kommissioniersystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bewegung des Kommissionierers zur Bereitstellung</td>
<td>findet nicht statt</td>
<td>eindimensional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manuell</td>
</tr>
<tr>
<td>Erntechnik der Güter durch den Kommissionierer</td>
<td>manuell</td>
<td>mechanisch</td>
</tr>
<tr>
<td></td>
<td>ein Teil pro Zugriff</td>
<td>mehrere Teile pro Zugriff</td>
</tr>
<tr>
<td>Transport der Güter zum Abgabeort</td>
<td>findet nicht statt</td>
<td>eindimensional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manuell</td>
</tr>
<tr>
<td>Abgabe</td>
<td>statisch</td>
<td>dynamisch</td>
</tr>
<tr>
<td></td>
<td>zentral</td>
<td>dezentral</td>
</tr>
<tr>
<td></td>
<td>geordnet</td>
<td>ungeordnet</td>
</tr>
<tr>
<td>Rücktransport der angebrochenen Ladeeinheiten</td>
<td>findet nicht statt</td>
<td>eindimensional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>manuell</td>
</tr>
</tbody>
</table>

Tabelle 4: Morphologische Darstellung des Materialflusssystems (vgl. VDI 3590 1994, S. 6)

2.3 Organisationssystem

Das Organisationssystem setzt sich aus den drei Bausteinen *Aufbau-, Ablauf- und Betriebsorganisation* zusammen.
2.3.1 Aufbauorganisation

2.3.2 Ablauforganisation

Kann der Kommissionierauftrag einem Kundenauftrag direkt zugeordnet werden, spricht man von **auftragsorientierter Entnahme**. Bei einer **artikelorientierten** Kommissionierung werden hingegen die Prozesse der Entnahme und der Zusammenstellung der Kundenaufträge voneinander getrennt und in zwei separaten Schritten durchgeführt (zweistufige Kommissionierung). In einem ersten Schritt werden alle in einer größeren Auftragsmenge identischen Artikel in einem
Kommissioniervorgang entnommen und im zweiten Schritt auftragsbezogen zusammengeführt. Dies setzt jedoch voraus, dass zunächst eine Sammlung mehrerer Kundenaufträge in so genannten *Auftragsstapeln* oder *Batches* erfolgt. Daher wird die zweistufige Kommissionierung auch als *Batchkommissionierung* bezeichnet [vgl. ebd., S. 42].

2.3.3 Betriebsorganisation

Die folgende Tabelle 5 fasst nochmals die Teilsysteme des Organisationssystems und deren Realisierungsmöglichkeiten zusammen.

<table>
<thead>
<tr>
<th>Organisationssystem</th>
<th>Teilsysteme</th>
<th>Kriterien</th>
<th>Realisierungsmöglichkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aufbauführung</td>
<td>Zonenauflistung</td>
<td>einzönig</td>
</tr>
<tr>
<td></td>
<td>Ablauforganisation</td>
<td>Sammlung</td>
<td>seriell</td>
</tr>
<tr>
<td></td>
<td>Entnahme</td>
<td>artikelorientiert</td>
<td>auftragsorientiert</td>
</tr>
<tr>
<td></td>
<td>Abgabe</td>
<td>artikelorientiert</td>
<td>auftragsorientiert</td>
</tr>
<tr>
<td></td>
<td>Betriebsorganisation</td>
<td>Auftragssteuerung</td>
<td>ohne Optimierung</td>
</tr>
</tbody>
</table>

Tabelle 5: Morphologische Darstellung des Organisationssystems (vgl. VDI 3590 1994, S. 6)
3 Strukturierung der Handhabungs- und Prüfprozesse für Kommissionierung und Verpackung

3.1 Prozessmodell der Kommissionierung und Verpackung

3.1.1 Kommissionierprozess

Die Auftragsannahme umfasst neben den vorbereitenden Tätigkeiten wie das Annehmen der Auftragsinformationen (z. B. Pickliste) und Aufnehmen von Kommissionierbehältern (z. B. Rollcontainer) auch die mentale Aufnahme der Entnahimeinformationen, wie beispielsweise das Lesen der ersten Position auf der Pickliste.

Zur Entnahme gehören neben dem Entnehmen, Abzählen und dem Ablegen der Güter auch mehrere Identifikationen, wie z. B. die Güterbezeichnung, die Verpackungseinheit (Gebinde) und der Abgabeort.

Im Rahmen der Kontrolle und Quittierung prüft der Kommissionierer die Entnahmeeinheiten (z. B. auf Beschädigungen) und quittiert anschließend die Entnahme (z. B. Abhaken der Position auf der Pickliste).

Die Abgabe umfasst neben der Abgabe der Kommissioniereinheit (z. B. Abstellen des Rollcontainers an einem vordefinierten Abgabeort, Abstellen der Schachtel auf einem Förderband) auch die Rückmeldung des Kommissionierauftrages (z. B. durch Eingabe der Auftragsdaten an einem Terminal).

Wurden die Aufträge artikelweise kommissioniert, müssen diese entsprechend der Kundenaufträge sortiert und zusammengeführt werden. Die Sortierung kann durch automatische Systeme, wie Sorter, aber auch durch eine Kommissionierperson durchgeführt werden.

Prozessmodell der Kommissionierung

Prozessstruktur

In Abbildung 10 sind die Prozesselemente nochmals als Prozesshierarchie veranschaulicht, wobei für den Hauptprozess „Kommissionieren“ beispielhaft der Teilprozess „Entnahme“ bis zur Ebene der „Aktivitäten“ abgebildet wird.

![Prozesshierarchie](image)

3.1.2 Teilprozesse der Kommissionierung

Nachfolgend werden alle Teilprozesse abgebildet und deren Grundprozesse beschrieben.
3 Strukturierung der Handhabungs- und Prüfprozesse für Kommissionierung und Verpackung

Bereitstellung

![Diagramm der Bereitstellung](image)

Abbildung 11: Teilprozess „Bereitstellung“ (Menk 1998, S. 148)

Die Vorbereitung der Entnahme ist optional, d. h. sie kann entweder im Rahmen der Bereitstellung oder parallel zur Entnahme erfolgen. Hierzu zählen Tätigkeiten wie das Öffnen von Umkartons oder Verpackungen, als auch die Kontrolle der Verpackungseinheiten und gegebenenfalls das Kennzeichnen der

Auftragsannahme

Nachdem der Kommissionierer die Auftragsinformationen entgegen genommen hat wird ein Kommissionierbehälter aufgenommen. Uncodierte Behälter sind neutral und müssen den Auftragsinformationen entsprechend noch gekennzeichnet werden (z. B. durch Anheften des Kommissionierbelegs oder Aufkleben eines Auftragsetiketts). Codierte Behälter haben eine feste Codierung (z. B. Barcode) und werden durch Identifizierung des Codes (z. B. Scannen) über ein übergeordnetes Rechnersystem
mit dem Kommissionierauftrag verbunden. Wenn die Entnahmeeinheit zugleich der Versandseinheit entspricht (z.B. eine ganze Palette), entfällt die Aufnahme von Kommissionierbehältern.

Nach dem Ablesen der Auftragsposition erfolgt das Festlegen des Weges zum Entnahmeort. Bei einer mechanisierten Fortbewegung erfolgt dies durch Eingabe der Koordinaten für die erste Fachanfahrt. Im Falle der „Ware-zum-Mann“-Kommissionierung entfällt das Festlegen des Weges.

Fortbewegung zur Entnahme

![Fortbewegung zur Entnahme Diagramm]

Abbildung 13: Teilprozess „Fortbewegung zur Entnahme“ (Menk 1998, S. 149)

Die Fortbewegung zur Entnahme beschreibt, wie sich die Kommissionierperson zum Entnahmeort fortbewegt. Diese erfolgt ohne mechanische Unterstützung (der Kommissionierer geht zu Fuß) eindimensional oder mechanisch unterstützt, d.h. die Kommissionierperson bewegt sich auf einem Fördermittel (z.B. Gabelstapler oder Regalbediengerät) eindimensional oder zweidimensional fort.

Durch die Positionierung richtet sich die Kommissionierperson manuell oder mit Hilfe des Fördermittels so aus, dass die Entnahme erfolgen kann.
Entnahme

Der Kernprozess der Kommissionierung ist die Entnahme [vgl. Gudehus 2000b, S. 107]. Anhand der Auftragsinformationen hat sich die Kommissionierperson zum entsprechenden Bereitstellort bewegt, diesen identifiziert und ist nun bereit zur Entnahme.

Über die Identifikation der Verpackungseinheit wird geprüft, in welcher Mengenzusammenstellung die Artikel bereitgestellt werden. Entspricht die Menge an Artikeln einer Verpackungseinheit (z. B. zehn Stück) nicht der Entnahmeeinheit (z. B. sieben Stück), muss die Kommissionierperson die Verpackungseinheit öffnen und die entsprechende Anzahl an Artikeln entnehmen.
3 Strukturierung der Handhabungs- und Prüfprozesse für Kommissionierung und Verpackung

Im Anschluss an die Identifizierung der zu entnehmenden Artikel erfolgt die Entnahme. Diese erfolgt manuell oder unterstützt durch mechanische Hilfsmittel, wie z. B. Gabel stapler.

Das Erfassen der Entnahmemenge in Form von Wiegen oder Abzählen kann parallel zur Entnahme oder danach erfolgen. Die Entnahme per Waage ist beispielsweise bei Kleinteilen zum Zählen der Menge sinnvoll.

Sofern die Entnahmeeinheiten an mehreren Abgabeorten abgegeben werden (wie z. B. bei der parallelen Kommissionierung), müssen diese identifiziert werden. Die Identifikation des Abgabeortes kann wie die Identifikation der Artikel manuell oder durch Einsatz technischer Hilfsmittel (z. B. Scanner, aktive Fachanzeigen) erfolgen.

Kontrolle und Quittierung

Abbildung 15: Teilprozess „Kontrolle und Quittierung“ (Menk 1998, S. 150)

Im Zuge der Zusatzkontrolle wird eine vorhergehende Inspektion der entnommen Artikel, z. B. auf Beschädigungen, vorgenommen.

Neben der Quittierung umfasst dieser Teilprozess auch die Kontrolle des Auftragsstandes. Hierbei ist zwischen der Kontrolle der Artikelstückzahlen und der Auftragspositionen zu unterscheiden.

Eine Überprüfung des Füllungsgrades der Kommissionierbehälter stellt sicher, dass das entsprechende Kommissionierhilfsmittel nicht überladen wird.

Die Überprüfung der Nachschubnotwendigkeit sorgt dafür, dass die Bereitstellmenge für weitere Kommissionieraufträge ausreichend ist. Bei systemgeführter Bestandsführung kann der Nachschub EDV-gestützt ausgelöst werden. Ebenso kann es Aufgabe der Kommissionierperson sein, den Nachschub bei einem bestimmten
Meldebestand – wenn der Bereitstellort leer ist oder nur noch eine Restmenge in der Bereitstelleinheit vorrätig ist – auszulösen.

Wird eine Bestandsführung am Fach durchgeführt, dokumentiert die Kommissionierperson die entnommene Menge am Bereitstellort (z. B. durch Eintragen der Entnahmemenge in eine Liste).

Fortbewegung zur Abgabe

Abbildung 16: Teilprozess „Fortbewegung zur Abgabe“ (Menk 1998, S. 150)

Sofern bei der Auftragsübernahme keine bereits codierten Kommissionierbehälter übergeben wurden, müssen diese vor der Abgabe noch gekennzeichnet werden. Bei der beleggeführten Kommissionierung erfolgt dies beispielsweise durch Ablegen der Pickliste in oder durch Aufkleben eines Etiketts auf den Kommissionierbehälter. Im Rahmen der beleglosen Kommissionierung sind die Kommissionierbehälter in der Regel bereits durch einen Strichcode, einen Magnetstreifen oder eine Identifikationsnummer gekennzeichnet.

Bei einer dynamischen Abgabe der Kommissioniereinheiten werden diese direkt an ein Fördermittel (z. B. ein angetriebenes Förderband, das sich direkt vor der Regalfront befindet) abgegeben. Eine Fortbewegung zur Abgabe ist also nur bei statischer Abgabe der Entnahmeeinheiten erforderlich. Die Ausprägungsformen der Fortbewegung entsprechen denen der Fortbewegung zur Entnahme.

Die Identifikation des Abgabesortes kann sowohl manuell als auch automatisch erfolgen. Beispielsweise liest die Kommissionierperson die am Abgabeort angebrachte Nummer und gibt diese bei der anschließenden Rückmeldung des Auftrages an einem Terminal an. Eine automatische Identifizierung des Abgabesortes
wird beispielsweise durch eine automatische Weiterleitung der Kommissionierbehälter auf einem Fördermittel realisiert. Durch Ablesen der Codierung (z. B. Barcode) an Lesestationen (z. B. durch Scanner unterhalb des Fördermittels) werden die Behälter automatisch zu vorgegebenen Abgabeorten transportiert.

Abgabe

![Abbildung 17: Teilprozess „Abgabe“ (Menk 1998, S. 151)](image)

Falls die Verpackung direkt während des Kommissionierprozesses erfolgt, so sind die Verpackungsaufgaben vor der Abgabe der Kommissioniereinheiten durchzuführen. Hierbei unterscheiden sich die zu verrichtenden Tätigkeiten nicht wesentlich von denen einer nachgelagerten Verpackung, welche im Anschluss an das Prozessmodell der Kommissionierung dargestellt wird (s. Abschnitt 3.1.4).

Sortierung

![Diagramm der Sortierprozesse](image)

3.1.3 Verpackungsprozess

Wenn nicht nach dem Pick & Pack-Prinzip – die kommissionierte Ware wird gleich am Pickplatz in die externe Versandeinheit abgelegt – kommissioniert wurde, muss
die unverpackte Ware im Anschluss an die Kommissionierung noch versandfertig gemacht werden. Die Verpackung kann automatisch, durch entsprechende Lagertechnik (z. B. durch maschinelle Umreifung des Kommissionierbehälters mit einem Metallband) erfolgen oder manuell durchgeführt werden. Dabei können Packhilfsmittel (wie z. B. Verschließ- oder Polstermittel) oder Ladeeinheitensicherungsmittel (wie z. B. Folien, Klebebänder, Schnüre, Gurte, Kunststoffbänder) eingesetzt werden.

Abbildung 19: Teilprozesse der Verpackung (in Anlehnung an Menk 1998, S. 152)

Der Verpackungsprozess lässt sich untergliedern in die Teilprozesse Packmittel vorbereiten, Ware schützen, Ware einpacken, Inneneinrichtung verwenden, Beipackteile einbringen, Packmittel nachbereiten, Packmittel kennzeichnen und Packstück bereitstellen, welche im Folgenden dargestellt werden.

3.1.4 Teilprozesse der Verpackung

Packmittel vorbereiten

Zur Vorbereitung des Packmittels gehören alle Aktivitäten, die erforderlich sind, damit das Packmittel die Ware aufnehmen kann. Hierzu gehört die Bereitstellung des Packmittels am Arbeitsplatz, sowie die Vorbereitung des Packmittels zur Befüllung (Karton aufrichten und sichern bzw. öffnen, verkleben etc.).

Ware schützen

3 Strukturierung der Handhabungs- und Prüfprozesse für Kommissionierung und Verpackung

Ware einpacken

Abbildung 22: Teilprozess „Ware einpacken“

Der Teilprozess „Ware einpacken“ beinhaltet alle Vorgänge, die erforderlich sind, um die Ware bereit zu stellen und in das Packmittel einzubringen. Gegebenenfalls findet dies im Wechsel mit den erforderlichen Schutzmaßnahmen statt, falls die einzelnen Produkte separat geschützt werden müssen. Zudem kann eine zeitliche Überlagerung mit dem Teilprozess „Inneneinrichtung verwenden“ vorliegen.

Inneneinrichtung verwenden

Abbildung 23: Teilprozess „Inneneinrichtung verwenden“

Bei dem Einpacken der Ware kann es erforderlich sein, die einzelnen Produkte voneinander zu trennen. Hierzu werden z. B. Inneneinrichtungen (Styrofor, Schaumstofffolien etc.) in das Packmittel eingebracht. Der Teilprozess „Inneneinrichtung verwenden“ besteht aus allen erforderlichen Aktivitäten zur Bereitstellung und Verwendung des entsprechenden Materials.
3 Strukturierung der Handhabungs- und Prüfprozesse für Kommissionierung und Verpackung

Beipackteile einbringen

![Diagramm](image1)

Abbildung 24: Teilprozess „Beipackteile einbringen“

Neben der Ware sind häufig zusätzliche Beipackteile einzubringen, insbesondere auftragsbegleitende Papiere (Lieferscheine, Rechnungen, Retourenzettel, Kontrollbelege o. ä.). Diese müssen bereitgestellt (ausfüllen, ausdrucken, bereit legen) und eingelegt werden.

Packmittel nachbereiten

![Diagramm](image2)

Abbildung 25: Teilprozess „Packmittel nachbereiten“

Nach Einbringen der Ware, der Schutz- und Inneneinrichtungen sowie der Beipackteile wird das Packmittel transportfähig gemacht. Hierzu gehören das Verschließen der Verpackung z. B. mit Klebeband, Klammern, Umreifungen oder im Fall von Mehrwegbehältnen mit Deckeln sowie gegebenenfalls das Sichern gegen unerwünschtes Öffnen beim Transport.
Packmittel kennzeichnen

Abbildung 26: Teilprozess „Packmittel kennzeichnen“

Vor der Bereitstellung für den Transport des Packmittels ist die Kennzeichnung erforderlich. Diese enthält gegebenenfalls sowohl das Aufbringen eindeutiger Identifikationsmerkmale (Klartext-Beschreibung, Barcode, Auftragsnummer) und der für den Transport erforderlichen Angaben (Adresse des Empfängers bzw. der internen Abteilung sowie des Versenders, Versandart, Absender etc.) als auch die Kennzeichnung besonderer Hinweise für das Handling des Packstücks (Warnhinweise auf Zerbrechlichkeit, Kennzeichnung der Oberseite). Analog zum Teilprozess „Beipackteile einbringen“ sind auch hier alle erforderlichen Aktivitäten zur Bereitstellung (ausfüllen, ausdrucken, bereit legen etc.) der Kennzeichnung sowie die Aufbringung auf dem Packmittel enthalten.

Packstück bereitstellen

Abbildung 27: Teilprozess „Packstück bereitstellen“

Im letzten Teilprozess „Packmittel bereitstellen“ des Verpackungsprozesses erfolgt der Transport zur Übergabestelle und das Abstellen in einer definierten Zone oder auf einer Versandeinheit (Ladungsträger). Der Transport kann hierbei manuell, mechanisch oder automatisch erfolgen (Fortbewegung zur Abgabe).
3.2 Prüfprozesse

Für die Integration der Prüfung in den Kommissionierprozess müssen zunächst die Anforderungen an die Prüfungen analysiert werden. Aus der Analyse können Maßnahmen zur Erfüllung der Anforderung abgeleitet werden. Ausgehend von der Erfüllung dieser Anforderungen können anschließend die Freiheitsgrade der Prüfung auf ihre Variationsmöglichkeiten hin untersucht werden, um hieraus diverse Prüfstrategien abzuleiten (Abbildung 28). [Crostack02]

Abbildung 28: Ablauf der Festlegung der Prüfstrategie

Um die Anforderungen, die den Qualitätszustand beeinflussen, identifizieren zu können, wird zunächst auf das Ursache-Wirkungs-Diagramm von Ishikawa [Peifer01] zurückgegriffen.

Im Falle der Kommissionierung ist hier zu prüfen, welche Anforderungen Einfluss auf die diversen Freiheitsgrade der Prüfung haben. Ziel ist es, zunächst die für die Auswahl des geeigneten Prüfverfahrens relevanten Faktoren zu identifizieren, um anschließend eine Entscheidung treffen zu können und darauf aufbauend Prüfstrategien abzuleiten. [Crostack04b]
Die Anforderungen, welche sich in Bezug gesetzt zu Ishikawa auf die Erfüllung der Prüfung auswirken, sind Folgende (s. auch Abbildung 29):

Zum einen der Faktor Mensch. Zunächst ist aus Kosten und Zeitgründen i.d.R. der Wunsch gegeben, dass die Prüfung vom Kommissionierer und nicht von zusätzlichem Prüfpersonal ausgeführt wird. Dementsprechend soll die Prüfung selbst keine hohe Qualifikation der zu prüfenden Person voraussetzen.

Weitere Anforderungen, die sich auf das Prüfverfahren auswirken, leiten sich aus dem Kommissioniersystem ab. Auf Grund der Art des Kommissioniersystems können Anforderungen variieren. So ist z. B. bei einem vollautomatischen Kommissioniersystem eine manuelle Prüfung irrelevant; stattdessen werden vollautomatische Prüfsysteme gefordert.

Weitere Anforderungen generieren sich aus dem Prüfmerkmal. Je nach Merkmalen, die die zu kommissionierende Güter aufweisen (z.B. Gewicht, Geometrien, Aggregatzustand, Kennzeichnungsart,…), bilden sich hieraus Anforderungen bezüglich der Prüfmittel und der Prüfart.

Nach der Festlegung der Anforderungen und die damit einhergehende Erfüllung dieser werden nun die Freiheitsgrade der Prüfung detaillierter betrachtet.
Laut Pfeiffer wird die Prüfstrategie hauptsächlich durch fünf Freiheitsgrade beschrieben: (1) „Nach welchem Teilschritt der Kommissionierung sollen die Positionen geprüft werden?“ (Zeitpunkt der Prüfung), (2) Soll das Prüfmerkmal als kontinuierliches oder attributives Merkmal dargestellt werden? (Prüfart), (3) Wie viele Positionen eines Auftrages sollen geprüft werden? (Prüfumfang), (4) „Wann wird geprüft?“, „Durch wen wird geprüft?“ und „Womit wird geprüft?“ (Prüfmethod/-mittel) und (5) wo soll die Prüfung stattfinden? (Ort der Prüfung). Auf Grund der Komplexität und der hohen Anzahl an Variablen kommt es zu Zusammenhängen und Auswirkungen der Freiheitsgrade untereinander, so dass eine Festlegung von Freiheitsgraden im weiteren Verlauf als Anforderungen zu betrachten sind, deren Erfüllung durch Bestimmung der verbleibenden, wählbaren Freiheitsgrade erfolgt.[Crostack04c]

Tabelle 6 zeigt die Bestimmung der unterschiedlichen Freiheitsgrade für die Prüfplanung anhand des Beispiels der Identifikation des Bereitstellorts.

<table>
<thead>
<tr>
<th>Freiheitsgrad</th>
<th>Ausprägung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfzeitpunkt</td>
<td>Prozessnah</td>
</tr>
<tr>
<td>Prüfart</td>
<td>Attributprüfung</td>
</tr>
<tr>
<td>Prüfumfang</td>
<td>100%-Prüfung</td>
</tr>
<tr>
<td>Prüfort</td>
<td>Bereitstellort</td>
</tr>
<tr>
<td>Prüfperson</td>
<td>Selbstprüfung</td>
</tr>
<tr>
<td>Prüfmittel</td>
<td>ohne, Lesegeräte, …</td>
</tr>
</tbody>
</table>

Tabelle 6: Freiheitsgrade bei der Identifikation des Bereitstellorts

Die Leistungsfähigkeit der Prüfung, die Möglichkeit der Integration und der Aufwand der Prüfungsdurchführung variieren und hängen dabei vom Prüfmittel ab. Dabei hängt die Auswahl des Prüfmittels von den Anforderungen an die Prüfung in der Kommissionierung ab. Diese sind: (1) Wahrnehmung eines Merkmals (Einheit vorhanden/ beschädigt), (2) Vergleichen eines Merkmals (Überprüfung der Artikelnummer des Produkts mit der Artikelnummer auf dem Auftrag) und (3) Zählen eines Merkmals (richtige Menge eines Produktes in einer Kommissioniereneinheit).
In Tabelle 7 sind die grundsätzlichen in der Kommissionierung einsetzbaren Prüfmittel und ihre Eignung für die Prüfaufgabe dargestellt:

<table>
<thead>
<tr>
<th>Prüfmethode Prüfmittel</th>
<th>wahrnehmen</th>
<th>zählen</th>
<th>vergleichen</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>stationäre Datenterminals</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>mobile Datenterminals</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>stationäre Lesegeräte</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>mobile Lesegeräte</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Lese-/Speichergeräte</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>stationäre Wägesysteme</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>mobile Wägesysteme</td>
<td>●</td>
<td>○</td>
<td>●</td>
</tr>
<tr>
<td>Lichtschranken</td>
<td>●</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Bildverarbeitung</td>
<td>●</td>
<td>●</td>
<td>○</td>
</tr>
</tbody>
</table>

● = gut geeignet
○ = bedingt geeignet
○ = nicht geeignet

Tabelle 7: Darstellung potentieller Prüfmittel
Je nach eingesetztem Prüfmittel wird die Aktivität der Prüfung bestimmt. Hiermit werden folgende Prüfmaßnahmen definiert:

- **Wiegen**: Dieses Verfahren beruht auf den unterschiedlichen Eigengewichten der Artikel. Sind die einzelnen Gewichte eines Auftrages bekannt, so kann errechnet werden, wie viel das Gesamtgewicht zu betragen hat. Somit ist es möglich, gerade bei Aufträgen mit sehr hoher Artikelanzahl zeitsparend die Vollständigkeit zu überprüfen.

- **Einzellquittierung**: Die Einzelquittierung dient der Überprüfung jedes einzelnen Artikels. Dies kann anhand einer Checkliste oder durch ein Scanverfahren geschehen. Durch die einzelne Überprüfung jedes Artikels wird sowohl der Vollständigkeit als auch der richtigen Artikelwahl genüge getan.

- **Lehren**: Dieses Prüfverfahren kann bei stark abweichenden Artikelgeometrien eingesetzt werden. Der entnommene Artikel wird kurz anhand einer Form gelehrt, bevor er weitertransportiert wird. Dadurch wird Typfehlern entgegengewirkt.

- **Automatisierte Prüfung**: Dies geschieht anhand von Lichtschranken, taktilen Sensoren und Bildverarbeitungen.
Welche Prüfmaßnahme am besten geeignet ist, hängt von der jeweiligen Situation ab. In Kapitel 7.1 wird daher noch genauer auf die Gestaltung der Freiheitsgrade der Prüfstrategie und die Umsetzung von Prüfmaßnahmen in Kommissionierprozessen durch Simulationsvarianten eingegangen.

Auf Basis der dargestellten Standardprozesse für Kommissionierung und Verpackung erfolgt im weiteren Verlauf eine Betrachtung der Prozesse hinsichtlich der benötigten Ausführungszeiten, der entstehenden Kosten sowie der Entstehung von Fehlern.
4 Ermittlung von Zeiten, Kosten, Auftretens- und Entdeckungswahrscheinlichkeiten

4.1 Zeitermittlung in der Kommissionierung und Verpackung

- Auftragsübermittlung und -annahme,
- Auftragsbearbeitung,
- Kommissionierung und Verpackung,
- Verladung und den Transport sowie die
- Einlagerung der Ware beim Kunden.

Neben der Auswirkungen auf die Lieferzeit ist die zeitliche Dauer der Kommissionier- und Verpackungstätigkeiten jedoch vor allem unter Kostengesichtspunkten relevant, da nur bei Kenntnis der jeweiligen Ausführungszeit für jeden Teilprozess die tatsächlich entstandenen Kosten ermittelt werden können. Insbesondere die Personal- und Betriebsmittelkosten je Kommissionierauftrag sind nur dann ermittelbar, wenn die jeweilige Dauer der Inanspruchnahme für Personal und Betriebsmittel bekannt sind.

4.1.1 Allgemeine Methoden zur Prozesserfassung

Grundsätzlich existieren verschiedene Ansätze zur Ermittlung von Tätigkeitszeiten, welche je nach Anwendungsfall unterschiedlich geeignet sind. Hierbei ist zunächst danach zu unterscheiden, ob die tatsächlichen Ausführungszeiten (Ist-Zeiten) erfasst werden bzw. ihr zeitlicher Anteil ermittelt wird, oder ob Vorgabezeiten (Soll-Zeiten) betrachtet werden (s. Abbildung 31).
Methoden zur Prozesserfassung

- Ist-Anteile von Zeitarten erfassen
 - Multimoment-Häufigkeitsverfahren (MMH)
 - Befragen
 - Beurteilen und Schätzen

- Ist-Zeiten erfassen
 - Multimoment-Zeitverfahren (MMZ)
 - Selbstaufschreiben
 - Zeitmessen und Zeitaufnehmen

- Soll-Zeiten bestimmen
 - Systeme vorbestimmter Zeiten

Bei der Bestimmung von Soll-Zeiten werden jeweils die gegebenen Randbedingungen und somit die Einflussgrößen auf die Ausführungszeit beachtet, so dass eine Übertragung der ermittelten Zeiten auf andere Aufträge durch Variation der Einflussgrößen möglich ist. Hier sind insbesondere die Systeme vorbestimmter Zeiten hervorzuheben, zu denen u.a. die verschiedenen Verfahren von MTM (Methods Time Measurement) sowie Work-Factor und das MOST-Verfahren (Maynard Operation Sequence Technique) gehören.

![Abbildung 32: Anwendung und Bekanntheitsgrad unterschiedlicher SvZ-Verfahren (Westkämper und Sautter 1998, S. 47)](image)

4.1.2 Anwendung der MTM-Verfahren zur Zeitermittlung

Zu den MTM-Verfahren zählen mehrere Datensysteme, denen gemeinsam ist, dass sie sowohl quantitativ ermittelbare als auch qualitativ bewertbare Einflussgrößen berücksichtigen. (s. Abbildung 33).

![Abbildung 33: Übersicht der Datensysteme des MTM-Verfahrens](image)

Abbildung 34: MTM-Datenkonzept (Ausschnitt) (MTM 2000b)

Abbildung 35: Differenz zwischen Arbeitsmethode und Arbeitsweise (MTM 2000b)

Die Auswahl eines geeigneten Analysiersystems für Produktionsbereiche kann anhand der in Abbildung 36 dargestellten Vorgehensweise zur Bestimmung des Methodenniveaus erfolgen.

Abbildung 36: Methode zur qualitativen Bestimmung des Methodenniveaus (in Anlehnung an Becks 1993, S. 262)

Für manuelle Tätigkeiten in logistischen Bereichen existiert eine derartige Methodik nicht, es ist jedoch auch hier festzustellen, dass das Methodenniveau abhängig von der Wiederholhäufigkeit der Abläufe, deren Arbeitsinhalt, der Arbeitssystemgestaltung und der Organisation ist. Daher ist auch hier die Auswahl eines geeigneten Analysiersystems in Abhängigkeit von den jeweiligen

4.1.3 MTM-Logistikdaten

Basierend auf dem MTM-UAS-Verfahren sind spezielle MTM-Logistikdaten entwickelt worden, in denen die für die Logistik relevanten Teilprozesse durch Zeitbausteine abgebildet sind. Hiermit ist eine vereinfachte Zeitermittlung für den Transport mit

- Stapler (Fahrgabel-, Schubmast- oder Gehgabelstapler),
- Elektroschlepper,
- Handgabelhubwagen und
- Transportwagen

möglich. Für das Handling von Verpackungen und Teilen sind die Zeitbausteine

- Verpackung öffnen,
- Verpackung verschließen,
- Informationen verarbeiten und
- (Karton, Behälter, Gebinde oder Teil) Handhaben

4.2 Ermittlung der qualitätsrelevanten Kosten

Im Zuge der Qualitätsoptimierung sind bei der Kostenbetrachtung insbesondere die qualitatsbezogenen Kosten zu betrachten. Hierzu zählen hier alle Kostenarten und –positionen, welche entstehen, um die gestellten Qualitätsanforderungen in der Kommissionierung und Verpackung erfüllen zu können. Qualitätsbezogene Kosten entstehen im Wesentlichen bei der Durchführung präventiver Maßnahmen, bei der eigentlichen Qualitätsprüfung sowie durch die Bearbeitung und Beseitigung interner

Um dennoch eine möglichst verursachungsgerechte Ermittlung der qualitätsbezogenen Kosten vornehmen zu können, ist es zunächst erforderlich, die der Qualitätssicherung zuzuordnenden Kostengrößen eindeutig zu definieren.

![Abbildung 38: Traditionelle Kostengliederung und neue Kostengliederung (Wildemann04)](image)

Dies hat zur Konsequenz, dass Prüfkosten näher gehend dahin untersucht werden müssen, inwiefern sie zu welchen Teilen der Gruppe Übereinstimmung oder der Gruppe Abweichung zugeordnet werden. Da dies im vorliegenden Fall schwer nachzuvollziehen ist, wird im Rahmen des Projekts der traditionelle Ansatz betrachtet. Hierzu wird im Folgenden die bereits erwähnte Dreiteilung der Qualitätsbezogene Kosten detailliert erläutert [vgl. hier und im Folgenden DIN 55350 1995].

4.2.1 Qualitätsbezogene Kosten

Die DIN 55350 sieht eine Unterteilung der qualitätsbezogenen Kosten in die Bereiche Fehlervermeidung, Fehlererkennung und Fehlerbehebung vor. Unter

| Klassische Dreiteilung der qualitätsbezogenen Kosten in Kostengruppen und Elemente |
|--|--|--|
| Fehlervermeidungskosten | Prüfkosten | Fehlerkosten |
| • Qualitätspanierung | • Eingangsprüfung | • Ausschuss |
| • Qualitätssicherheits-untersuchung | • Fertigungsprüfung | • Nacharbeit |
| • Prüfplanung | • Endprüfung | • Sorterprüfung |
| • Qualitätserkennung | • Abnahmeprüfung | • Wiederholungsprüfung |
| • Qualitätssicherheitprüfung | • Prüfmitteil | • Untersuchung zur Fehlerrückgewinnung |
| • Prüfprüfung | • Prüfung und Überwachung der Prüfmitteil| • Qualitätbedingte Ausfallşzeit |
| • Qualitätsbildung | • Prüfkosten | • Sonstige Kosten |
| • Prüfdokumentation | • Laboruntersuchungen | • innerbetrieblich festgestellter Fehler |
| • Leitung des Qualitätsbewusstens | • Qualitätsfähigkeitsuntersuchungen | |
| • Qualitätsforderung | • Prüfungplanung | |
| • Sonstige Maßnahmen der Fehlervermeidung |• Ausformung | |

Abbildung 39: Dreiteilung der qualitätsbezogenen Kosten in Kostengruppen
(vgl. DGQ 1985, S. 15)
Nachfolgend werden die Kostengruppen in Anlehnung an die Maßnahmen, die damit verbunden sind, auch als Fehlervermeidungs-, Fehlererkennungs- und Fehlerbehebungskosten benannt. Die in Abbildung 39 allgemein aufgeführten Kostenelemente werden zunächst jeweils kurz allgemein erläutert und anschließend auf die Kommissionierung und Verpackung übertragen.

4.2.2 Fehlervermeidungskosten

Kosten der Qualitätsplanung

Kosten der Qualitätsfähigkeitsuntersuchung

Kosten der Prüfplanung

In der Kommissionierung ist es Aufgabe der Prüfplanung, geeignete Zeitpunkte im Kommissionier- und Verpackungsprozess festzulegen, an denen einzelne Qualitätsmerkmale überprüft werden können, den Umfang der Prüfung (Stichproben oder 100%-Prüfung) festzulegen und den Prüfprozess zu gestalten (Prüfart, Prüfort, Prüfmittel, Prüfperson, Ablauf der Prüfung). Hierzu gehören auch indirekte Prüfungen, z. B. doppeltes Identifizieren, welche das Entstehen eines Fehlers (etwa durch Entnahme aus falschem Lagerfach) verhindern sollen.

Kosten der Qualitätslenkung

Kosten für Qualitätsaudits

Kosten der Qualitätsförderung

Sonstige Kosten der Fehlerverhütung

Hierzu gehören alle auftretenden Kosten von Maßnahmen zur Fehlerverhütung, die keiner der oben genannten Kategorien zugeordnet werden können.

4.2.3 Fehlererkennungskosten

Im Folgenden sind die Kategorien der Prüfkosten dargestellt [vgl. Hering 1996, S. 353f.].
Prüfkosten in Wareneingang, Fertigung und Endprüfung

Dies sind Kosten, die durch qualitative (z. B. Artikelanzahl) und quantitative (z. B. Artikelzustand) Prüfprozesse in Wareneingang, Fertigung und Endprüfung anfallen. In der Kommissionierung und Verpackung können dies Zwischenprüfungen (z. B. parallel zum Entnahmeprozess) oder Endprüfungen (alle Prüfungen, die durchgeführt werden, bevor die kommissionierte Ware in den Versand geht) sein.

Kosten für Abnahmeprüfungen

Kosten für Abnahmeprüfungen sind durch externe Prüfungen verursachte Kosten wie z. B. Abnahme und Zertifizierung von Prüfgeräten und anderen Betriebsmitteln durch Prüfinstitute.

Kosten für Prüfmittel

Kosten für Instandhaltung und Überwachung der Prüfmittel

Kosten der Prüfdokumentation
Die Ergebnisse der durchgeführten Prüfungen müssen einerseits aus rechtlichen Gründen, soweit dies aus Haftungs- und Schadenbegrenzungsgründen vorgeschrieben ist, andererseits zur Auswertung und Optimierung der Leistungserstellungs- und Prüfprozesse dokumentiert werden. Bei der Dokumentation der erfassten Prüfdaten entstehende Kosten, z. B. für Papierdokumente, Datensicherungen und Personal, gehören ebenfalls zu den Fehlererkennungskosten.

Sonstige Prüfkosten
Hierzu gehören alle auftretenden Kosten von Maßnahmen zur Fehlererkennung, die keiner der oben genannten Kategorien zugeordnet werden können.

4.2.4 Fehlerbehebungskosten
Fehlerbehebungskosten sind die zur Beseitigung von auftretenden Fehlern aufzuwendenden Kosten. Für die Fehler, die innerhalb des Unternehmens (vor der Auslieferung) entdeckt werden, fallen interne Fehlerbehebungskosten an. Fehler, die außerhalb des Unternehmens entdeckt werden, verursachen externe Fehlerbehebungskosten. Die internen Fehlerbehebungskosten entstehen für Personal- und Betriebsmittelaufwände zur Nachbearbeitung (z.B. Wiedereinlagerung oder Neukommissionierung) sowie zur Untersuchung der Prozesse. Die Höhe der entstehenden Kosten hängt dabei maßgeblich vom Zeitpunkt der Fehlererkennung ab. Stellt z. B. der Kommissionierer bereits vor der Entnahme durch Scannen des Entnahmeortes fest, dass die Identifikation fehlerhaft war (d. h. der Kommissionierer hat den falschen Entnahmeort angesteuert), so kann er diesen Fehler durch erneutes Identifizieren des Entnahmeortes schnell korrigieren. Wenn dieser
Identifikationsfehler erst bei der Endkontrolle entdeckt wird, ist bereits eine fehlerhafte Entnahme durchgeführt worden und die Artikel müssen wieder eingelagert und neu kommissioniert werden.

Bei den externen Fehlern entstehen zusätzliche Kosten durch Retouren. Hierzu gehören neben den Kosten der Retourenabwicklung auch die Kosten des Transportes der fehlerhaften Ware zurück zum Lieferanten sowie des Transportes der neu kommissionierten Ware zum Kunden (externe Logistik kosten).

Nachfolgend sind die einzelnen Kategorien der Fehlerbehebungskosten aufgeführt [vgl. auch Hering 1996, S. 354 ff.].

Ausschusskosten

Ausschusskosten entstehen durch Produkte, welche beschädigt sind und weder durch Nacharbeit noch durch Verwendung für andere Zwecke (z. B. als „B-Ware“) genutzt werden können. Diese Kosten sind jedoch in diesem Kontext nur zu berücksichtigen, wenn die Beschädigung auf die Kommissionierung und Verpackung zurückzuführen ist und nicht auf Transportschäden, Produktionsfehler oder unsachgemäße Lagerung usw.

Zusätzlich können Ausschusskosten entstehen, wenn die Artikel zwar prinzipiell noch verwendbar sind, von einer Verwendung jedoch aus wirtschaftlichen Gründen abgesehen wird. Dies kann beispielsweise der Fall sein, wenn eine Rücklieferung eines bereits an den Kunden ausgelieferten falschen Artikels teurer ist als die Abschreibung des entsprechenden Artikels, oder wenn fehlerhaft kommissionierte Aufträge aufgrund des Warenwertes entsorgt und nicht wieder eingelagert werden.

Nacharbeitskosten

Erfüllt ein Produkt (bzw. ein Auftrag) nicht die an ihn gestellten Qualitätsanforderungen (d. h. es ist fehlerhaft), und kann dieser Mangel durch Nachbearbeitung (zusätzliche Arbeitsprozesse) behoben werden, so entstehen Nacharbeitskosten. Hierzu gehören mögliche Kosten durch die Rückabwicklung bzw. Korrektur der fehlerhaft ausgeführten Prozesse (z. B. Wiedereinlagerung) sowie Kosten durch erneute Ausführung dieser Prozesse (z. B. Nachkommissionieren eines Artikels). Zudem können zusätzliche Kosten verursachende Prozesse (z. B. erneutes Erstellen der Lieferpapiere, Rücksprache mit anderen Abteilungen oder dem Kunden
etc.) erforderlich sein. Ob und in welchem Umfang diese Kosten anfallen, hängt davon ab, welcher Fehler vorliegt (Fehlmenge, Beschädigung usw.), in welchem Prozess dieser Fehler entstanden ist, wo dieser Fehler entdeckt wird und welche Maßnahmen zur Fehlerbehebung erforderlich und sinnvoll sind.

Nacharbeit im weitesten Sinne ist ebenfalls die Abwicklung von Retouren bei externen Fehlern. Da die hier entstehenden Kosten jedoch weit mehr als die bei internen Fehlern enthalten, werden die Retourenkosten hier separat betrachtet.

Kosten für Retouren

Bei Retouren durch externe Fehler entstehen neben den Nacharbeitskosten zusätzliche Kosten für die Retourenannahme, die Retourenabwicklung und die zusätzlichen Transporte (externe Logistikkosten). Bei der Retourenannahme ist eine eingehende Prüfung der zurückgesandten Ware erforderlich, da im Gegensatz zu den internen Fehlern der Zustand sowohl der bemängelten Artikel als auch möglicher mit zurück gesandter Artikel (bei Rücksendung der kompletten Lieferung) nicht bekannt ist [ten Hompel 2003, S. 28]. Falls erforderlich müssen die Artikel vor der Wiedereinlagerung gereinigt, neu verpackt und etikettiert werden, und Teillieferungen vereinzelt werden (Trennung von Ausschuss und wieder verwendbarer Ware) [vgl. ebd.]. Im Anschluss daran findet die Wiedereinlagerung oder Entsorgung der Artikel statt. Zu den durch diese Prozesse entstehenden Kosten fallen weitere Kosten an durch z. B. administrative Tätigkeiten (Beschwerdebearbeitung und Kommunikation mit dem Kunden, Dokumentation, Bestandsaufnahme wieder eingelagerter Artikel im EDV-System etc.) und zusätzliche Prozesse (analog zur Nacharbeit, z. B. erneute Kommissionierung und Verpackung).

Kosten für Untersuchungen zur Fehlerursachenfindung

Um die aufgetretenen Fehler in Zukunft vermeiden zu können, ist es erforderlich, die Fehlerursache, d. h. den Fehler verursachenden Teilprozess zu Untersuchen und die Entstehung des Fehlers zu ermitteln. Insbesondere bei immer wieder auftretenden Fehlern bietet eine detaillierte Analyse Möglichkeiten zur Qualitätsoptimierung. Die hierdurch entstehenden Kosten für die Durchführung EDV-Gestützter oder manueller Auswertungen und Fehleranalysen (z. B. durch Qualitätssicherungs-Systeme, wie

Gewährleistungs- und Kulanzkosten

In der Literatur werden die Gewährleistungs- und die Kulanzkosten häufig getrennt voneinander ausgewiesen [vgl. z. B. Hering 1996]. Im Rahmen dieser Untersuchung erscheint eine Zusammenfassung dieser Kategorien jedoch sinnvoll. Bei beiden handelt es sich um Kosten, die zur Behebung eines aufgetretenen Fehlers nach dessen Übernahme der Ware verursacht sind, und durch eine Leistung an den Kunden (Ersatzlieferung, Entschädigung) entstehen. Der Unterschied besteht darin, ob der Lieferant zur Erbringung gesetzlich verpflichtet ist (Gewährleistung), oder diese Leistung freiwillig erbringt, z. B. mit dem Ziel der Kundenbindung (Kulanz). Aus Sicht der Kommissionierung und Verpackung ist jedoch der Beweggrund der Kostenentstehung nicht relevant; vielmehr ist entscheidend, ob die anfallenden Kosten durch Fehlerentstehung in der Kommissionierung und Verpackung verursacht wurden, da sie nur dann in diesem Zusammenhang als Fehlerbehebungskosten anzusehen sind.

Sonstige Fehlerbehebungskosten

4.2.5 Opportunitätskosten

4 Ermittlung von Zeiten, Kosten, Auftretens- und Entdeckungswahrscheinlichkeiten

eine indirekte, auf Annahmen beruhende Berücksichtigung in Form von kalkulatorischen Kostenräten (fiktiver Betrag je fehlerhafter Lieferung) ist möglich. Durch falsche Annahmen kann dies jedoch zu einer erheblichen Kostenverzerrung führen.

4.2.6 Berücksichtigung der qualitätsbezogenen Kosten bei der Optimierung der Qualitätsprüfung

Die dargestellten qualitätsbezogenen Kosten werden wegen der bereits erwähnten Verstrickung mit den Leistungserstellungskosten nicht separat für die einzelnen Kostenkategorien ausgewiesen, sondern im Rahmen der Kommissionier- und Verpackungskosten mit berücksichtigt. Hierbei werden die indirekten qualitätsbezogenen Kosten für Qualitätsplanung, Mitarbeiterschulung, Leitung der Qualitätsabteilung, Auditierung usw., welche keinen direkten Bezug zu den Prüfstrategien haben, nicht berücksichtigt, da sie einerseits nicht Gegenstand der Optimierung von Prüfstrategien sind und andererseits ihre Auswirkungen auf die Leistungsqualität (Fehlerquote) nicht ermittelbar ist, d. h. die Untersuchung ist auf die qualitätsbezogenen Kosten beschränkt, die Einfluss auf die optimale Prüfstrategie haben. Eine Ermittlung der Kosten für die einzelnen Teilprozesse der Kommissionierung erfolgt in Kapitel 6.

4.3 Fehler in Kommissionierung und Verpackung

Die Anforderungen an die Kommissionierung zur Erreichung der Qualität bestehen in der Erfüllung der Merkmale „richtiges Objekt“, „richtige Menge“ und „richtiger Zustand“. Gemessen werden kann die Qualität des Kommissionierprozesses anhand der beiden Merkmalsausprägungen „erfüllt“ oder „nicht erfüllt“. Tritt die Merkmalsausprägung „nicht erfüllt“ auf, spricht man von einem Fehler [vgl. DIN 55350, S. 4].

4.3.1 Klassifizierung von Fehlern in Kommissionierung und Verpackung

Unter einem Kommissionierfehler werden im Folgenden die Fehler verstanden, deren Ursache in der Nichterfüllung der Qualitätsmerkmale „richtige Menge“ und „richtiges Objekt“ liegen. Die Nichterfüllung des Merkmals „richtiger Zustand“ wird nur als Kommissionierfehler angesehen, wenn dieser in der Kommissionierung verursacht

Typfehler liegen dann vor, wenn falsche Artikel kommissioniert wurden. Diese Artikel wurden entweder anstelle der richtigen Artikel, die jetzt im Auftrag fehlen, kommissioniert, oder sie wurden zusätzlich kommissioniert. Bezüglich der Vollständigkeit der Versandeinheit, also der Menge der Artikel, die der Kunde durch seinen Auftrag angefordert hat, ist zwischen einem **Mengenfehler** und einem **Auslassungsfehler** zu unterscheiden. Wurden die richtigen Artikel kommissioniert, jedoch in der falschen Anzahl, handelt es sich um einen **Mengenfehler**. Ein **Auslassungsfehler** liegt dann vor, wenn die kommissionierte Einheit nicht vollständig ist – eine oder mehrere Positionen wurden ausgelassen, ohne dass ein anderer, fälscher Artikel kommissioniert wurde. Davon abzugrenzen sind **Zustandsfehler**. Diese sind dadurch gekennzeichnet, dass die Artikel beschädigt sind oder Serviceleistungen (z. B. Preisetiketten an der Ware) fehlen.

![Abbildung 40: Fehlerarten in der Kommissionierung (Lolling 2003, S. 28)](image-url)

\[
\text{Typfehlerquote} \% = \frac{\text{Anzahl der Bezugs einheiten mit Typfehlern}}{\text{Anzahl der Bezugs einheiten}} \times 100
\]

\[
\text{Mengenfehlerquote} \% = \frac{\text{Anzahl der Bezugs einheiten mit Mengenfehlern}}{\text{Anzahl der Bezugs einheiten}} \times 100
\]

\[
\text{Auslassungsfehlerquote} \% = \frac{\text{Anzahl der Bezugs einheiten mit Auslassungsfehlern}}{\text{Anzahl der Bezugs einheiten}} \times 100
\]

\[
\text{Zustandsfehlerquote} \% = \frac{\text{Anzahl der Bezugs einheiten mit Zustandsfehlern}}{\text{Anzahl der Bezugs einheiten}} \times 100
\]

Aus der Summe der Fehlerquoten von Typ-, Mengen-, Auslassungs- und Zustandsfehlern ergibt sich die Kommissionierfehlerquote. Eine Kommissionierfehlerquote von 0,3 % würde bei 1000 Kommissionieraufträgen bedeuten, dass 30 Aufträge im Sinne der obigen Fehlertypen fehlerhaft sind.

Eigenschaften und Fähigkeiten sowie der Umsicht der Menschen, die in den technischen Systemen tätig sind [vgl. Zimolong 1990, S. 328].

Menschliche Fehlerwahrscheinlichkeit

Die menschliche Fehlerwahrscheinlichkeit (Human Error Probability, HEP) beschreibt die Wahrscheinlichkeit, mit der eine Tätigkeit zu einem beliebigen Zeitpunkt fehlerhaft
ausgeführt wird. Grundsätzlich kann die Auftretenshäufigkeit menschlicher Arbeitsfehler abgeschätzt werden, wenn die Zahl der Fehler und die Zahl der Gelegenheiten, in denen ein Fehler auftreten kann, bekannt sind.

Dann lässt sich die menschliche Fehlerwahrscheinlichkeit als Quotient aus der Anzahl der fehlerhaft ausgeführten Handlungen zur Gesamtzahl aller ausgeführten Handlungen berechnen [vgl. Zimolong 1990, S. 315]:

\[
HEP = \frac{\text{Anzahl der fehlerhaft durchgeführten Aufgaben}}{\text{Anzahl aller durchgeführten Aufgaben}}.
\]

Die Zuverlässigkeit einer durchgeführten Aufgabe kann generell mit der Zuverlässigkeitswahrscheinlichkeit (Human Reliability Probability) durch das mathematische Gegenteil der Fehlerwahrscheinlichkeit ausgedrückt werden [vgl. Park 1997, S. 162]:

\[
HRP = 1 - HEP
\]

<table>
<thead>
<tr>
<th>Aufgabe</th>
<th>Beschreibung</th>
<th>HEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>eine Analoganzeigen falsch ablesen</td>
<td>0.003</td>
</tr>
<tr>
<td>2</td>
<td>einen Graphen falsch ablesen</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>eine Störanzeige übersehen</td>
<td>0.003</td>
</tr>
<tr>
<td>4</td>
<td>ein Ventil nicht schließen</td>
<td>0.005</td>
</tr>
<tr>
<td>5</td>
<td>eine Checkliste nicht benutzen</td>
<td>0.01</td>
</tr>
<tr>
<td>6</td>
<td>eine Checkliste nicht in der richtigen Reihenfolge benutzen</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Tabelle 8: Fehlerwahrscheinlichkeiten (HEP) für die Tätigkeit in Kernkraftwerken (vgl. Ebd.)

Auftretensorientierte Klassifizierung von Fehlern

Zu den bedeutenden Klassifizierungsansätzen zählt der Ansatz von Rigby [vgl. Rigby 1970 zitiert in Dörfel und Reichart und Zimolong 1992, S. 85], der entsprechend ihrem Auftreten drei Arten von Fehlhandlungen unterscheidet:

1. zufällige Fehlhandlungen (häufige Ereignisse, die aber keine sichtbare Tendenz aufweisen)
2. sporadische Fehlhandlungen (einzelnene Ereignisse)
3. systematische Fehlhandlungen (Ereignisse mit einer klar sichtbaren Tendenz).

<table>
<thead>
<tr>
<th>Fehlerkategorie</th>
<th>Beispiele</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auslassung (omission)</td>
<td>einen Zwischenschnitt auslassen</td>
</tr>
<tr>
<td></td>
<td>eine ganze Aufgabe auslassen</td>
</tr>
<tr>
<td>Fehlhandlung (commission)</td>
<td></td>
</tr>
<tr>
<td>Auswahlfehler</td>
<td>einen falschen Artikel auswählen</td>
</tr>
<tr>
<td>Reihenfolgefehler</td>
<td>den n-ten Schritt vor dem m-ten tun (m<n)</td>
</tr>
<tr>
<td>Zeitfehler</td>
<td>zu früh, zu spät anfangen</td>
</tr>
<tr>
<td>qualitativer Fehler</td>
<td>einem Irrtum unterliegen</td>
</tr>
</tbody>
</table>

Dem auftretensorientierten Ansatz folgend hat sich auch die Unterteilung der Kommissionierfehler in die vier Fehlerarten (siehe Abschnitt 4.3.1) bewährt [vgl. Lolling 2003, S. 28].

Ursachenorientierte Klassifizierung von Fehlern

Hacker [vgl. Hacker 1986, S. 424 ff] führt menschliche Arbeitsfehler auf fehlende Informationen bzw. fehlende oder falsche Nutzung objektiv vorhandener Informationen zurück, wobei es sich um Informationen handelt, die eine entscheidende Rolle bei der Regelung von Handlungen spielen. Das Fehlen von Informationen bzw. deren Nutzungsmängel lassen sich auf folgende Einflüsse zurückführen:

<table>
<thead>
<tr>
<th>Fehlen der handlungsregulierenden Information:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Information ist objektiv, d.h. als physikalisches Signal, nicht vorhanden</td>
</tr>
<tr>
<td>Die Information ist zwar objektiv vorhanden, aber vom handelnden Subjekt nicht wahrnehmbar</td>
</tr>
<tr>
<td>Die Information ist in einer Form vorhanden, die dem menschlichen Wahrnehmungsapparat nicht zugänglich ist (z.B. unterschwelliger Reiz)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutzungsmängel der handlungsregulierenden Information:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fehlende Nutzung aufgrund von Übersehen, Übergehen, Vergessen, Informationsreduktion oder Verarbeitungsdefiziten (z.B. Überfordern der menschlichen Informationsverarbeitung)</td>
</tr>
<tr>
<td>Falsche Nutzung durch fehlerhafte Klassifikation oder Identifikation, durch Fehlbeurteilung, durch Täuschungen, durch Zielbildung, Fehlentscheidungen</td>
</tr>
</tbody>
</table>

Tabelle 10: Einflüsse auf das Fehlen oder auf Nutzungsmängel handlungs-regulierender Information (vgl. Hacker 1986, S. 424 ff)

menschlicher Fehler in der Aufgabe, den Arbeitsbedingungen und den Leistungsvoraussetzungen begründet.

Abbildung 41: Einflussfaktoren für die zuverlässige Erledigung einer Arbeitsaufgabe (in Anlehnung an Zimolong 1990, S. 318; Dörfel und Reichart und Zimolong 1992, S. 90)

Im Folgenden erfolgt auf Basis der hier dargestellten Grundlagen eine Untersuchung der Kommissionierprozesse hinsichtlich der Entstehung von Kommissionierfehlern.

4.3.2 Untersuchung der Kommissionier- und Verpackungsprozesse

Voraussetzung für eine Optimierung der Kommissionier- und Verpackungsqualität ist die Kenntnis der Prozesse, die Fehler herbeiführen können. Das Arbeitsergebnis der Kommissionierung kann sowohl durch vorgelagerte Bereiche (wie z. B. die Kontrolle der Ware am Wareneingang) als auch durch die operative Abwicklung beeinflusst werden. Im Rahmen der vorliegenden Arbeit bildet das Prozessmodell der Kommissionierung die Basis der nachfolgenden Überlegungen. Damit beschränkt sich der betrachtete Bereich der Fehlerentstehung auf die definierten Teilprozesse (Bereitstellung, Auftragsannahme, Fortbewegung zur Entnahme, Entnahme, Kontrolle und Quittierung, Fortbewegung zur Abgabe, Abgabe und Sortierung).

Darauf aufbauend werden fehlerbeeinflussende Faktoren der Kommissionierung betrachtet. Hierzu zählt neben der technischen Zuverlässigkeit vor allem die menschliche Zuverlässigkeit, da die Kommissionierung im Allgemeinen überwiegend manuell ausgeführt wird. Die technische Zuverlässigkeit hat im Vergleich zur menschlichen Zuverlässigkeit einen geringeren Einfluss auf die Fehlerentstehung (siehe Abschnitt 4.3.1). Aus diesem Grund wird auf die Störanfälligkeit technischer Geräte nicht näher eingegangen. Vielmehr werden die Schnittstellen zwischen Mensch und Kommissioniertechnik betrachtet, d. h. der Aspekt der Benutzung und Bedienung technischer Hilfsmittel steht im Vordergrund.

Bereitstellung

Fehler bei der Anforderungsbearbeitung, wie z. B. eine Verzögerung des Nachschubs, können im Rahmen der Kommissionierung zu Wartezeiten führen.

Auftragsannahme

Fehler bei der Belegerstellung können darin liegen, dass Positionen nicht aufgenommen (Auslassungsfehler) oder das bei der Angabe der Menge oder einer Bezeichnung (z. B. Artikelnummer) Fehler gemacht werden (Mengen- bzw. Typfehler).
Bei einer automatischen Reihenfolgebildung ist die Entnahmereihenfolge bereits festgelegt, so dass sowohl der vom Kommissionierer zurückzulegende Weg, als auch die Reihenfolge der zu entnehmenden Artikel fixiert ist. Hierdurch kann Wegzeit eingespart werden und bei der anschließenden Entnahme und Abgabe der Artikel wird eine ungünstige Reihenfolge (z. B. Ablegen schwerer Artikel auf leichte) vermieden.

Fehler beim Aufnehmen codierter Kommissionierbehälter, wie z. B. die fehlerhafte Identifizierung des Behälters, führen zu Typfehlern oder Mengenfehlern.

<table>
<thead>
<tr>
<th>Grundprozess</th>
<th>potenzieller Fehler</th>
<th>Auswirkung</th>
<th>Fehlerart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.a Kommissionierung mit Beleg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Belegerstellung</td>
<td>Fehler bei Belegerstellung</td>
<td>fehlende Position</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>falsche Mengenangabe</td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>falscher Typ</td>
<td>Typfehler</td>
</tr>
<tr>
<td>1.2 Annahme per Beleg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Reihenfolgebildung manuell</td>
<td>fehlerhafte Reihenfolgebildung</td>
<td>Leichte Artikel werden vor schweren Artikeln kommissioniert</td>
<td>Zustandsfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zeitverzögerung</td>
<td></td>
</tr>
<tr>
<td>1.4 automatische Reihenfolgebildung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.b Kommissionierung ohne Beleg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 automatische Reihenfolgebildung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Annahme der Auftragsinformation beleglos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Aufnehmen der Kommissionierbehälter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Aufnehmen codierter Kommissionierbehälter</td>
<td>Fehler beim Aufnehmen des Behälters</td>
<td>Artikel werden in falschen Behälter kommissioniert</td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typpfehler</td>
</tr>
<tr>
<td>2.2 Aufnehmen uncodierter Kommissionierbehälter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Ablegen der Auftragsinformation</td>
<td></td>
<td>Position wird übersehen</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ablegen der falschen Menge</td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ablegen der falschen Position</td>
<td>Typfehler</td>
</tr>
<tr>
<td>4. Weg festlegen</td>
<td></td>
<td>Fehler beim Festlegen des Weges</td>
<td>Zeitverzögerung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>potenzieller Fehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position wird übersehen</td>
</tr>
<tr>
<td>Ablegen der falschen Menge</td>
</tr>
<tr>
<td>Ablegen der falschen Position</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auswirkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artikel werden in falschen Behälter kommissioniert</td>
</tr>
<tr>
<td>Zeitverzögerung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fehlerart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td>Mengenfehler</td>
</tr>
<tr>
<td>Typfehler</td>
</tr>
</tbody>
</table>

Fehler beim Festlegen des Weges können zu Zeitverzögerungen führen. Dies ist beispielsweise der Fall, wenn der Kommissionierer eine Lagerortnummer falsch abliest, dies bei der anschließenden Identifizierung des Bereitstellortes feststellte und so dann erneut den Bereitstellort aufsuchen muss.

Fortbewegung zur Entnahme

Bereitstellort (z. B. aufgrund einer fehlerhaften Identifikation des Bereitstellortes) führt zu Typfehlern.

<table>
<thead>
<tr>
<th>Grundprozess</th>
<th>potenzieller Fehler</th>
<th>Auswirkung</th>
<th>Fehlerart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fortbewegung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 manuell</td>
<td>Fehler bei der Fortbewegung</td>
<td>Herausfallen der Artikel aus Kommissionierbehälter</td>
<td>Zustandsfehler</td>
</tr>
<tr>
<td>1.2 mechanisch</td>
<td></td>
<td>Herausfallen der Artikel aus Kommissionierbehälter</td>
<td></td>
</tr>
<tr>
<td>Unterstützung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Identifikation des Bereitstellortes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 manuell</td>
<td>fehlerhafte Identifikation des Bereitstellortes</td>
<td>Identifikation des falschen Bereitstellortes</td>
<td>Typfehler</td>
</tr>
<tr>
<td>2.2 unterstützt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Pick-by-light</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 Pick-by-voice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Positionierung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 manuell</td>
<td>fehlerhafte Positionierung</td>
<td>Entnahme des falschen Artikels</td>
<td>Typfehler</td>
</tr>
<tr>
<td>ungünstige Positionierung</td>
<td></td>
<td>Beschädigung des Artikels bei Entnahme</td>
<td>Zustandsfehler</td>
</tr>
<tr>
<td>3.2 mechanisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unterstützung</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entnahme

Wie bereits erläutert besteht ein Zusammenhang zwischen der Gestaltung der Auftragsinformationen und möglichen Kommissionierfehlern. Neben der Beleggestaltung nehmen sowohl die Lagerortkennzeichnung als auch die Artikelanordnung Einfluss auf potenzielle Fehler bei der Entnahme. Optisch ähnliche, nebeneinander gelagerte Artikel sowie eine unstrukturierte Lagerortkennzeichnung können zu Verwechslungen führen (Typfehler) [vgl. Lolling 2003, S. 64].

Bei der Kommissionierung von Verpackungseinheiten führt eine fehlerhafte Identifizierung (z. B. durch fehlenden Hinweis, dass am entsprechenden Lagerort Bereitstellungseinheiten lagern) zu Typfehlern bzw. Mengenfehlern. Wird anstelle der Verpackungseinheit, die z. B. aus fünf Artikeln besteht, nur ein Stück (also ein Artikel) entnommen, führt dies zur Zusammenstellung der falschen Menge.

Eine fehlerhafte Kennzeichnung der Entnahmeeinheit liegt vor, wenn beispielsweise ein falscher Informationsträger (z. B. Etikett) auf der Entnahmeeinheit angebracht wird (Typfehler) oder der Informationsträger der Entnahmeeinheit beschädigt ist (Zustandsfehler).
Fehler bei der Mengenerfassung können durch falsches Abzählen oder fehlerhaftes abwiegen der Entnahmemenge zu Mengenfehlern führen.

<table>
<thead>
<tr>
<th>Grundprozess</th>
<th>potenzieller Fehler</th>
<th>Auswirkung</th>
<th>Fehlerart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Identifikation des Artikels</td>
<td>fehlerhafte Identifikation des Artikels</td>
<td>Entnahme der falschen Menge</td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entnahme des falschen Artikels</td>
<td>Typfehler</td>
</tr>
<tr>
<td>1.1 manuell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 MDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Pick-by-light</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 Pick-by-voice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Identifikation der Verpackungseinheit</td>
<td>fehlerhafte Identifikation der Verpackungseinheit</td>
<td>Entnahme der falschen Menge</td>
<td>Mengenfehler</td>
</tr>
<tr>
<td>2.1 manuell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 MDE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Pick-by-light</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 Pick-by-voice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Entnahme</td>
<td>fehlerhafte Entnahme</td>
<td>Entnahme der falschen Menge</td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entnahme des falschen Artikels</td>
<td>Typfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Beschädigung des Gutes</td>
<td>Zustandsfehler</td>
</tr>
<tr>
<td>3.1 manuell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.2 mechanisch unterstützt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Kennzeichnung der Entnahmeeinheit</td>
<td>fehlerhafte Kennzeichnung der Entnahmeeinheit</td>
<td>fehlerhafte Identifikation bei Abgabe</td>
<td>Typfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Informationsträger ist beschädigt</td>
<td>Zustandsfehler</td>
</tr>
<tr>
<td>5. Mengenerfassung Entnahmemenge</td>
<td>Abzählen</td>
<td>Abzählen der Entnahmemenge fehlerhaft</td>
<td>Abzählen der falschen Menge</td>
</tr>
<tr>
<td></td>
<td>Abwiegen</td>
<td>Abwiegen der Entnahmemenge fehlerhaft</td>
<td>Abwiegen der falschen Menge</td>
</tr>
<tr>
<td>6. Identifikation der Ablegestelle</td>
<td>fehlerhafte Identifikation der Ablegestelle</td>
<td>Ablegen an falscher Stelle</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ablegen an falscher Stelle</td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typfehler</td>
<td></td>
</tr>
<tr>
<td>6.1 manuell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2 unterstützt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3 automatisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Ablegen des Gutes</td>
<td>Ablegen an falscher Stelle</td>
<td>ungeradordnetes Ablegen</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fehlerhafte Kundenzuordnung</td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typfehler</td>
<td></td>
</tr>
</tbody>
</table>

Kontrolle und Quittierung

Eine fehlerhafte Überprüfung der Nachschubnotwendigkeit, z. B. durch Übersehen des Nachschubbedarfs, kann dazu führen, dass der Nachschub nicht rechtzeitig ausgelöst wird und damit bei den nachfolgenden Entnahmen zu wenig bzw. gar keine Artikel in der Bereitstelleinheit vorhanden sind. Bei der Bearbeitung des Kommissionierauftrages kann es so zu Auslassungsfehlern kommen, wenn die Bearbeitungszeit für den jeweiligen Auftrag keine Zeitverzögerungen (durch das Warten auf den Artikel) zulässt (z. B. bei Eilaufträgen).

Fehler in der Bestandsführung am Fach können ebenfalls dazu führen, dass für den folgenden Auftrag zu wenig Artikel bereitgestellt werden (Auslassungsfehler). Dies ist beispielsweise bei manueller Bestandsführung der Fall, wenn die Kommissionierer mehr Einheiten am Fach eintragen, als tatsächlich vorhanden sind (z. B. Denk-, Lesefehler).
<table>
<thead>
<tr>
<th>Grundprozess</th>
<th>potenzieller Fehler</th>
<th>Auswirkung</th>
<th>Fehlerart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Zusatzkontrolle</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2. Quittierung</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2.1 Belegbearbeitung</td>
<td>Fehler bei der Quittierung</td>
<td>Quittierung der falschen Position</td>
<td>Mengenfehler</td>
</tr>
<tr>
<td>2.2 MDE-Gerät</td>
<td>–</td>
<td>–</td>
<td>Typfehler</td>
</tr>
<tr>
<td>2.3 Pick-by-light</td>
<td>Quittierung vor Entnahme</td>
<td>Entnahme der falschen Menge</td>
<td>Mengenfehler</td>
</tr>
<tr>
<td>2.4 Pick-by-voice</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>3. Überprüfung des Auftragsstandes</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4. Rückmeldung des Auftragsstandes</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4.1 manuell</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4.2 automatisch</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>5. Überprüfung Füllungsgrad der Kommissionierbehälter</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Überprüfung manuell</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6. Überprüfung der Nachschubnotwendigkeit</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>6.1 manuell</td>
<td>Fehlerhafte Überprüfung der Nachschubnotwendigkeit</td>
<td>Nachschub wird nicht ausgelöst</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td>6.2 automatisch</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7. Bestandsführung am Fach</td>
<td>manuell</td>
<td>Fehler in der Bestandsführung</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td></td>
<td>zu wenig Artikel in der Bereitstelleneinheit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fortbewegung zur Abgabe

Bei der parallelen Bearbeitung mehrerer Kommissionieraufträge kann es durch fehlerhafte Zuordnung des Kommissionierbehälters (z. B. durch Vertauschen der Kommissionierbelege beim Ablegen in den Kommissionierbehälter) zu Auslassungs-, Mengen- oder Typfehlern kommen.

Ebenso wie bei der Fortbewegung zur Entnahme können ungesicherte Artikel während der Fortbewegung herausfallen (Zustandsfehler).

Fehler bei der manuellen Identifikation des Abgabeortes (z. B. durch fehlerhaftes Ablesen des Abgabeortes auf dem Beleg), führen zur Abgabe des Kommissionierauftrages an einem falschen Abgabeort und somit zu Auslassungs-, Mengen- oder Typfehlern.
Fortbewegung zur Abgabe

<table>
<thead>
<tr>
<th>Grundprozess</th>
<th>potenzieller Fehler</th>
<th>Auswirkung</th>
<th>Fehlerart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kennzeichnung der Kommissionierbehälter</td>
<td>Fehler bei Kennzeichnung</td>
<td>fehlerhafte Kundenzuordnung</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typfehler</td>
</tr>
<tr>
<td>2. Fortbewegung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 manuell</td>
<td>Fehler bei der Fortbewegung</td>
<td>Herausfallen der Artikel aus Kommissionierbehälter</td>
<td>Zustandsfehler</td>
</tr>
<tr>
<td>2.2 mechanisch unterstützt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Identifikation des Abgabeortes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 manuell</td>
<td>Fehler bei der Identifikation des Abgabeortes</td>
<td>Fehler bei der Abgabe</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typfehler</td>
</tr>
<tr>
<td>3.2 automatisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Positionierung</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 16: Potenzielle Fehler bei der Fortbewegung zur Abgabe (vgl. Heinz und Menk 1997, S. A-1 ff)

Abgabe

Um die Ware beim Versand vor Beschädigungen zu schützen sind Verpackungsaufgaben erforderlich. Bei Kommissioniereinheiten, die nicht ausreichend verpackt sind (z. B. in nur mit einem Spanngurt zusammengehaltenen Rollcontainern) kann es beim anschließenden Transport zur Beschädigung der Artikel (z. B. Herausfallen der Ware) kommen (Zustandsfehler).

Eine fehlerhafte Abgabe der Kommissioniereinheit (z. B. durch Verwechseln der Abgabeortnummer aufgrund fehlender Identifikation des Abgabeortes) kann dazu führen, dass die kommissionierten Einheiten einem falschen Auftrag zugeordnet werden, so dass dieser letztlich falsche Artikel oder Artikel in der falschen Menge enthält (Auslassungs-, Mengen-, Typfehler).
Abgabe

<table>
<thead>
<tr>
<th>Grundprozess</th>
<th>potenzieller Fehler</th>
<th>Auswirkung</th>
<th>Fehlerart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Durchführung von Verpackungsaufgaben</td>
<td>Fehler bei Durchführung der Verpackungsaufgaben</td>
<td>Beschädigung der Artikel</td>
<td>Zustandsfehler</td>
</tr>
<tr>
<td>2. Abgabe der Kommissioniereinheit</td>
<td>Fehler bei der Abgabe</td>
<td>fehlerhafte Kundenzuordnung</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typfehler</td>
</tr>
<tr>
<td>3. Rückmeldung des Kommissionierauftrages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Entsorgung von Hilfsmitteln und Abfall</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 17: Potenzielle Fehler bei der Abgabe (vgl. Heinz und Menk 1997, S. A-1 ff)

Sortierung

Im Rahmen der Auftragszusammenführung müssen Teilaufträge zu Kommissionieraufträgen gruppiert werden. Ebenso wie bei der „Fortbewegung zur Abgabe“ zieht eine fehlerhafte Identifikation des Abgabeortes Auslassungs-, Mengen- und Typfehler nach sich.

Bei der Abgabe von Teilaufträgen am falschen Ort kann zur fehlerhaften Kundenzuordnung führen und hierdurch bei den entsprechenden Kundenaufträgen in Auslassungs-, Mengen- und Typfehlern resultieren.

<table>
<thead>
<tr>
<th>Grundprozess</th>
<th>potenzieller Fehler</th>
<th>Auswirkung</th>
<th>Fehlerart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aufnehmen der Entnahmeeinheit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Identifikation des Abgabeortes</td>
<td>Fehler bei der Identifikation des Abgabeortes</td>
<td>Identifikation des falschen Abgabeortes</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typfehler</td>
</tr>
<tr>
<td>3. Abgabe der Entnahmeeinheit</td>
<td>Fehler bei der Abgabe</td>
<td>fehlerhafte Kundenzuordnung</td>
<td>Auslassungsfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mengenfehler</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Typfehler</td>
</tr>
</tbody>
</table>

4.3.3 Fehlerbeeinflussende Faktoren in der Kommissionierung und Verpackung

Die vorangegangenen theoretischen Überlegungen zur Fehlerentstehung in der Kommissionierung und Verpackung haben bereits erkennen lassen, dass die Art der Informationsbereitstellung einen wesentlichen Einfluss auf die Fehleranfälligkeit der Kommissionierung hat. Im Folgenden wird betrachtet, inwiefern die Fehlerentstehung darüber hinaus auch durch die Lager- und Kommissionierorganisation sowie menschliche Faktoren beeinflusst wird.

Lager- und Kommissionierorganisation

Lagerorganisation

Anordnung der Artikel

Kennzeichnung der Lagerorte

Abgrenzung der Lagerorte

Kommissionierorganisation

Serielle und parallele Kommissionierung
Auftragsbezogene und artikelbezogene Kommissionierung

Informationsbereitstellung

Kommissionierung mit Beleg

<table>
<thead>
<tr>
<th>Kommissionierungsauftrag</th>
<th>TA6</th>
<th>Stiel 1/1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auftrags-Nr.: 16421</td>
<td>SKS</td>
<td></td>
</tr>
<tr>
<td>Kunden-Nr.: 5948</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
<td>1 - A - 05</td>
<td>15659 Zylinderkopfschraube</td>
</tr>
<tr>
<td>2</td>
<td>1 - B - 01</td>
<td>15670 2x4, weiß, flach</td>
</tr>
<tr>
<td>3</td>
<td>1 - B - 07</td>
<td>15736 2x2, blau</td>
</tr>
<tr>
<td>4</td>
<td>1 - C - 02</td>
<td>15791 2x8, gelb, flach</td>
</tr>
<tr>
<td>5</td>
<td>1 - C - 03</td>
<td>15802 Schienen, blau</td>
</tr>
<tr>
<td>6</td>
<td>1 - C - 09</td>
<td>15855 Versand</td>
</tr>
<tr>
<td>7</td>
<td>1 - C - 10</td>
<td>15879 1x4, blau</td>
</tr>
<tr>
<td>8</td>
<td>2 - A - 03</td>
<td>15921 2x4, schwarz</td>
</tr>
<tr>
<td>9</td>
<td>2 - A - 05</td>
<td>15912 1x6, schwarz</td>
</tr>
</tbody>
</table>

Abbildung 42: Beispiele für strukturierte (links) und unstrukturierte (rechts) Beleggestaltung (vgl. Lolling 2003, S. 58)

Kommissionierung mit MDE-Geräten

Kommissionierung mit Pick-by-light

Kommissionierung mit Pick-by-voice

Menschliche Faktoren

Qualifikation

Entgeltsystem

4.4 Ermittlung von Fehlhandlungswahrscheinlichkeiten anhand geeigneter Verfahren
4 Ermittlung von Zeiten, Kosten, Auftretens- und Entdeckungswahrscheinlichkeiten

4.4.1 Verfahren zur Fehleranalyse

Ursache-Wirkungs-Diagramm

In Abbildung 43 wird der Aufbau eines Ursache-Wirkungs-Diagramms beispielhaft veranschaulicht.

Fehler-Möglichkeits- und Einfluss-Analyse

5. die Konstruktions-FMEA (auch Entwicklungs-FMEA),
6. die System-FMEA und
7. die Prozess-FMEA.

Dieser gliedert sich in fünf Schritte:

9. organisatorische Vorbereitung,
10. inhaltliche Vorbereitung,
11. Durchführung der Analyse,
12. Auswertung der Analyseergebnisse und
13. Terminverfolgung und Erfolgskontrolle.

Diese Schritte werden im Folgenden kurz beschrieben.

Organisatorische Vorbereitung
Bevor mit der eigentlichen Analyse begonnen werden kann, müssen zunächst der zu untersuchende Prozess bzw. das zu untersuchende Teilsystem, wie z. B. innerhalb der Kommissionierung die Entnahme, abgegrenzt werden. Weiterhin wird festgelegt, wer für die Erstellung der FMEA verantwortlich ist, welche Teams zur Durchführung gebildet werden und welche Termine einzuhalten sind.
Inhaltliche Vorbereitung

Nach Festlegung des Prozesses, für den die FMEA durchgeführt werden soll, ist dieser im nächsten Schritt zu strukturieren, d.h. in Teilprozesse aufzuziehen, um eine eindeutige Beschreibung des Analysegegenstandes festzuhalten. Zu den Teilprozessen der Entnahme gehören beispielsweise die „Identifikation des Gutes“ bzw. die „Identifikation der Verpackungseinheit“. Zur Durchführung der Analyse sind die Aufgaben entsprechend der Strukturierung des Untersuchungsgegenstands an die Teammitglieder zu verteilen.

Durchführung der Analyse

Kommissionier-FMEA

Teilprozess "Entnahme"

"Identifikation des Gutes" bis "Identifikation der Verpackungseinheit"

<table>
<thead>
<tr>
<th>Teilprozess</th>
<th>Potenzielle Fehler</th>
<th>Potenzielle Folgen des Fehlers</th>
<th>Potenzielle Fehlerursachen</th>
<th>Empfohlene Maßnahme</th>
<th>A</th>
<th>B</th>
<th>E</th>
<th>RPZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifikation des Gutes</td>
<td>Fehler bei der Identifikation des Gutes</td>
<td>Entnahme des falschen Gutes</td>
<td>fehlendes / falsche Hilfsmittel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ermüdung des Mitarbeiters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Seh Schwäche des Mitarbeiters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>schlechte Beleuchtung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>defektes Datenerfassungsgerät</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>schlechte Lagermittelgestaltung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ähnliche Verpackungen bzw. Artikel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fehler beim Ablesen der Auftragsposition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legende:

- A= Bewertungszahl für die Auftretenswahrscheinlichkeit 1 (unwahrscheinlich) - 10 (hoch)
- B= Bewertungszahl für die Bedeutung 1 (keine B.) - 10 (sehr hohe B.)
- E= Bewertungszahl für die Entdeckungswahrscheinlichkeit 1 (hoch) - 10 (unwahrscheinlich)
- RPZ= A x B x E

Auswertung der Analyseergebnisse

Terminverfolgung und Erfolgskontrolle

Aufgabe der Verantwortlichen ist die Überwachung der Durchführung unter Einhaltung der vereinbarten Termine. Ferner muss geprüft werden, ob die empfohlenen Maßnahmen zur Reduzierung der Fehler geeignet sind. Dies erfolgt durch eine Neubewertung der RPZ. Sofern die durchgeführten Maßnahmen keine Wirksamkeit zeigen, sind neue Maßnahmen zu erarbeiten.
In der folgenden Abbildung 45 ist die Vorgehensweise zur Durchführung der FMEA nochmals zusammengefasst.

![Abbildung 45: Vorgehensweise zur Erstellung einer FMEA (in Anlehnung an Pfeifer 2001, S. 399)](image)

Durch Einsatz der FMEA-Methode wird neben der Aufdeckung von potenziellen Fehlern eine Wissensbasis über die entsprechenden Prozesse aufgebaut sowie eine Verbesserung der Transparenz derselben erreicht.

Demgegenüber erfolgt bei der Kommissionier-FMEA eine Bewertung der Prozesse. Dadurch wird eine Klassifizierung der Prozesse hinsichtlich der Verbesserung der Qualitätsfähigkeit von Kommissioniersystemen ermöglicht.

Fehlerbaumanalyse

Ursachen, die nur bei gleichzeitigem Auftreten ein Ereignis auslösen, werden mit einem „&“-Symbol mit dem Folgeereignis verbunden.

Abbildung 46: Teilfehlerbaum für Typfehler (vgl. Lolling 2003, S. 37)

Zur Auswertung der Fehlerbäume kann eine quantitative Analyse durchgeführt werden. Hierzu müssen allerdings die Einzelwahrscheinlichkeiten der Ursachen bekannt sein, um die relativen Einflüsse der einzelnen Elemente ableiten zu können. Weiterhin kann über die im Fehlerbaum festgelegten Zusammenhänge mit Hilfe der booleschen Algebra, sofern die Einzelwahrscheinlichkeiten der Ursachen bekannt sind, die Auftretenswahrscheinlichkeit des untersuchten Fehlers (Top-Event) ermittelt werden.
Bewertung und Auswahl eines Verfahrens

Sowohl die FMEA als auch die Fehlerbaumanalyse werden prozessbezogen durchgeführt und unterstützen den Anwender bei der Identifizierung möglicher Fehler und deren Ursachen. Die Darstellung der vielfältigen potenziellen Fehlerursachen als Fehlerbaum kann jedoch schnell unübersichtlich und unhandlich werden. Demgegenüber ermöglichen die Formblätter der Kommissionier-FMEA eine anschauliche prozessbezogene Darstellung sowie eine direkte Anwendung auf die Kommissionierprozesse analog zum Prozessmodell der Kommissionierung.

Im Rahmen der FMEA erfolgt eine Bewertung einzelner Fehler durch die Berechnung der Risikoprioritätszahl. Demgegenüber müssen zur Fehlerbewertung mit Hilfe eines Fehlerbaumes Werte für die Wahrscheinlichkeiten des Auftretens aller Ereignisse, die zum Top-Event führen, bekannt sein.

In Bezug auf die Anwendbarkeit ist festzustellen, dass die FMEA leicht ausführbar ist. Anhand der Formblätter lässt sich jede Komponente (Teilprozess) einzeln und übersichtlich analysieren. Durch Vorgabe möglicher Fehlerursachen und Fehlerfolgen erhält der Anwender einen Leitfaden zur Durchführung. Weiterhin können die Formblätter leicht an die realen Prozesse angepasst werden. Darüber hinaus können das erarbeitete Wissen und die Erfahrungen wieder verwendet und weitergegeben werden.

In Tabelle 19 sind die Beurteilungskriterien der drei Verfahren nochmals zusammenfassend dargestellt.

4.4.2 Analyse und Bewertung der menschlichen Zuverlässigkeit

beabsichtigte Änderung analysiert und verglichen wird [vgl. Dörfel und Reichart 1992, S. 103].

Auf Expertenschätzungen beruhende Verfahren stellen Vorschriften bereit, anhand derer aus Einzelschätzungen von Experten die Fehlhandlungswahrscheinlichkeit einer Teil- oder Gesamtaufgabe ermittelt werden kann.

Unterstützende Verfahren beinhalten keine eigene Modellvorstellung über das menschliche Verhalten. Sie werden vielmehr angewendet, um die oben beschriebenen Verfahren effektiv anzuwenden oder erforderliche Modelle der zu untersuchenden Systeme aufzustellen und die anfallenden Berechnungen einfach durchzuführen.

Die nachfolgende Tabelle gibt, unterteilt nach den oben beschriebenen Kategorien, einen Überblick über einige der Verfahren.
<table>
<thead>
<tr>
<th>Verfahren</th>
<th>Autoren</th>
<th>Kennzeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expertenbasierte Verfahren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytische, modellbasierte Verfahren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEART Human Error Assessment and Reduction Technique</td>
<td>Williams 1988</td>
<td>Auf Basis einer Liste mit sehr allgemein beschriebenen Grundaufgaben werden Fehlhandlungswahrscheinlichkeiten angegeben. Einflussfaktoren auf die Zuverlässigkeit gehen als gewichtete Multiplikationsfaktoren in die Berechnung der Fehlerwahrscheinlichkeit ein.</td>
</tr>
<tr>
<td>MAPPS Maintenance Personal Performance Simulation</td>
<td>Siegel, Wolf 1969, Siegel et al. 1984</td>
<td>Zuverlässigkeitsabschätzungen für Wartungsaufgaben durch Simulationstechniken (Monte-Carlo-Methode)</td>
</tr>
<tr>
<td>(Zeit als Haupteinflussfaktor)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unterstützende Verfahren</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In diesem Forschungsprojekt sind anhand der Verfahren sowie der zur Verfügung stehenden Praxisdaten die Fehlhandlungswahrscheinlichkeiten verschiedener Kommissionier- und Verpackungsprozesse abzuschätzen, um eine Optimierung der Kommissionier- und Verpackungsqualität vornehmen zu können. Dieser Zielperspektive entsprechend, wurden für die weitere Vorhergehendeweise die HRA-
Verfahren THERP und ESAT ausgewählt. Die Auswahl dieser beiden Verfahren ist insbesondere in den folgenden beiden Argumenten begründet:

Technique of Human Error Prediction (THERP)

Definition der Systemfehler

Im ersten Schritt erfolgt eine Definition der relevanten Systemfehler. Diese betreffen Systemfunktionen, deren Erfolg oder Versagen bewertet werden soll und in denen menschliche Handlungen eine Rolle spielen [vgl. Ebd., S. 107]. Im Rahmen der Kommissionierung und Verpackung entsprechen die Systemfehler den Kommissionierfehlern (Auslassungs-, Mengen-, Typ- und Zustandsfehler; siehe Abschnitt 4.2).

Erfassung und Analyse der Einflussfaktoren

Abschätzung der Fehlerwahrscheinlichkeiten

Die nachfolgende Abbildung zeigt beispielhaft einen HRA Event Tree.

Ermittlung der Auswirkungen von Fehlhandlungen auf das Gesamtsystem

Dieser Schritt umfasst die Integration der ermittelten Fehlerwahrscheinlichkeiten in die Bewertung der Gesamtzuverlässigkeit des Systems, z. B. durch Einbindung in die Fehler- und Ereignisbäume des Gesamtsystems. Weiterhin erfolgt eine Bewertung der Bedeutung menschlichen Fehlverhaltens.

Ableitung von Gestaltungsmaßnahmen

Expertensystem für Aufgabentaxonomie (ESAT)

Das Verfahren ESAT wurde mit dem Ziel entwickelt, beliebige Aufgaben, die in einem Mensch-Maschine-System durchgeführt werden, nach der Zuverlässigkeit ihrer Durchführung zu klassifizieren. Im Gegensatz zu anderen Verfahren, wie z. B. THERP, bei denen notwendige Werte für die Wahrscheinlichkeit menschlicher Arbeitsfehler (HEP, siehe Abschnitt 0) angenommen, subjektiv geschätzt oder aus Datenbanken entnommen werden müssen, ist ESAT ein Verfahren zur Aufgabentaxonomie, also eine Methode, die die Abschätzung der Wahrscheinlichkeit

Aufgabenbeschreibung

Grundlage des Verfahrens ist eine Aufgabenbeschreibung, die es gestattet, Einflussfaktoren mit ein zu beziehen. Die Aufgabenbeschreibung muss daher so beschaffen sein, dass sie eine eindeutige Anweisung zur Durchführung der Aufgabe darstellt. Dabei erfolgt die Beschreibung nach dem folgenden Schema [siehe Brauser 1990a, S. 4]:

15. Beschreibung aller erforderlichen Wahrnehmungen (Aufnahme welcher Informationen von welcher Informationsquelle)

16. Beschreibung aller erforderlichen mentalen Operationen (Verarbeitung der aufgenommenen Informationen, Entscheidungen über die erforderlichen Handlungen)

17. Beschreibung aller zum Aufgabenziel führenden Handlungen (Abgabe von resultierenden Informationen)

18. Definition des Zeitbedarfs t_a zur Durchführung der Aufgabe.

19.

Zur anschließenden Berechnung des Belastungsvektors sind die Aufgabenelemente mit der „Elementarzeit“ t (Zeit für die Durchführung des Aufgabenelementes) sowie

<table>
<thead>
<tr>
<th>Standardwörter für Aktivitäten</th>
<th>Datenvorgabe</th>
<th>Bedeutung der Standardwörter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahrnehmungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesen, Sehen</td>
<td>0,3…0,6; 1…10</td>
<td>visuelle Informationsaufnahme</td>
</tr>
<tr>
<td>Hören</td>
<td>1,0; 2</td>
<td>akustische Informationsaufnahme</td>
</tr>
<tr>
<td>Fühlen</td>
<td>2,0; 5</td>
<td>taktile Informationsaufnahme</td>
</tr>
<tr>
<td>Spüren</td>
<td>3,0; 7</td>
<td>kinästhetische Informationsaufnahme</td>
</tr>
<tr>
<td>Überwachen</td>
<td>3,0; 10</td>
<td>komplexe Informationsaufnahme</td>
</tr>
<tr>
<td>Detektionen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selektiv wahrnehmen</td>
<td>1,0; 5</td>
<td>eingeübte, erwartete Reize</td>
</tr>
<tr>
<td>Suchen und Finden</td>
<td>2,0; 6</td>
<td>Reizwahrnehmung gegen Hintergrund</td>
</tr>
<tr>
<td>Entdecken</td>
<td>3,5; 10</td>
<td>unbekannte Reize gegen Hintergrund</td>
</tr>
<tr>
<td>Mentale Operationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vergleichen</td>
<td>0,1…0,2; 5…10</td>
<td>Informationen vergleichen</td>
</tr>
<tr>
<td>Merken (Speichern)</td>
<td>0,1…0,2; 2…10</td>
<td>Informationen merken</td>
</tr>
<tr>
<td>Erinnern</td>
<td>0,1…0,2; 2…10</td>
<td>Informationen rückschalten</td>
</tr>
<tr>
<td>Schätzen</td>
<td>3,0; 3</td>
<td>Informationen gewichtend vergleichen</td>
</tr>
<tr>
<td>Identifizieren</td>
<td>0,1…6</td>
<td>Bedeutung von Informationen erkennen</td>
</tr>
<tr>
<td>Rechnen</td>
<td>2,0; 4,8</td>
<td>mit numerischen Informationen rechnen</td>
</tr>
<tr>
<td>Transformieren</td>
<td>3,0; 8</td>
<td>Information in andere Formen umsetzen</td>
</tr>
<tr>
<td>Erkennen</td>
<td>1,0; 10</td>
<td>komplexe Zusammenhänge ableiten</td>
</tr>
<tr>
<td>Zählen</td>
<td>0,3…1,3; 2…10</td>
<td>zu entnehmende Artikel zählen</td>
</tr>
<tr>
<td>Entscheidungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wählen, Auswählen</td>
<td>1,0…1,5</td>
<td>z.B. Schalter auswählen</td>
</tr>
<tr>
<td>Entscheiden</td>
<td>2,0…6…10</td>
<td>Handlungsbedarf und Form ableiten</td>
</tr>
<tr>
<td>Handlungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hinsehen</td>
<td>1,0; 1</td>
<td>Blicksteuerung, -bewegung</td>
</tr>
<tr>
<td>Betätigen</td>
<td>1,0…2</td>
<td>gezieltete Hand- und Fußbewegung</td>
</tr>
<tr>
<td>Sprechen</td>
<td>1,0; 3</td>
<td>Information aussprechen</td>
</tr>
<tr>
<td>Bewegen</td>
<td>2,5; 4</td>
<td>allgemeine physische Bewegung</td>
</tr>
<tr>
<td>Schreiben (Quittieren)</td>
<td>0,8; 5</td>
<td>Informationen schriftlich abgeben</td>
</tr>
<tr>
<td>Eintippen</td>
<td>3,0; 6</td>
<td>Informationen über Keyboard abgeben</td>
</tr>
<tr>
<td>Zeichnen</td>
<td>3,5; 6…8</td>
<td>Informationen zeichnerisch darstellen</td>
</tr>
<tr>
<td>Regeln, Steuern</td>
<td>4,0; 9…10</td>
<td>komplexe manuelle Steuerung</td>
</tr>
<tr>
<td>Entnehmen</td>
<td>0,4…1,2; 1…2</td>
<td>Artikel aus Lagermittel entnehmen</td>
</tr>
<tr>
<td>Ablegen</td>
<td>0,1…2,0; 1…2</td>
<td>Artikel in Kommissionierhilfsmittel ablegen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standardwörter für Aktivitäten</th>
<th>Datenvorgabe</th>
<th>Bedeutung der Standardwörter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahrnehmungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lesen, Sehen</td>
<td>0,3…0,6; 1…10</td>
<td>visuelle Informationsaufnahme</td>
</tr>
<tr>
<td>Hören</td>
<td>1,0; 2</td>
<td>akustische Informationsaufnahme</td>
</tr>
<tr>
<td>Fühlen</td>
<td>2,0; 5</td>
<td>taktile Informationsaufnahme</td>
</tr>
<tr>
<td>Spüren</td>
<td>3,0; 7</td>
<td>kinästhetische Informationsaufnahme</td>
</tr>
<tr>
<td>Überwachen</td>
<td>3,0; 10</td>
<td>komplexe Informationsaufnahme</td>
</tr>
</tbody>
</table>

Bedeutung der Standardwörter

W1	visuelle Informationsaufnahme
W2	akustische Informationsaufnahme
W3	taktile Informationsaufnahme
W4	kinästhetische Informationsaufnahme
W5	komplexe Informationsaufnahme
D1	eingeübte, erwartete Reize
D2	Reizwahrnehmung gegen Hintergrund
D3	unbekannte Reize gegen Hintergrund
M1	Informationen vergleichen
M2	Informationen merken
M3	Informationen rückschalten
M4	Informationen gewichtend vergleichen
M5	Bedeutung von Informationen erkennen
M6	mit numerischen Informationen rechnen
M7	Information in andere Formen umsetzen
M8	komplexe Zusammenhänge ableiten
M9	zu entnehmende Artikel zählen
E1	z.B. Schalter auswählen
E2	Handlungsbedarf und Form ableiten
H1	Blicksteuerung, -bewegung
H2	gezieltete Hand- und Fußbewegung
H3	Information aussprechen
H4	allgemeine physische Bewegung
H5	Informationen schriftlich abgeben
H6	Informationen über Keyboard abgeben
H7	Informationen zeichnerisch darstellen
H8	komplexe manuelle Steuerung
H9	Artikel aus Lagermittel entnehmen
H10	Artikel in Kommissionierhilfsmittel ablegen

<table>
<thead>
<tr>
<th>Standardwörter für Informationen</th>
<th>Datenvorgabe</th>
<th>Bedeutung der Standardwörter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zeit</td>
<td>Vorgewicht</td>
</tr>
<tr>
<td>Informationsart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identnummer</td>
<td>*</td>
<td>1…10</td>
</tr>
<tr>
<td>Route</td>
<td>*</td>
<td>10</td>
</tr>
<tr>
<td>Ziffer</td>
<td>*</td>
<td>1</td>
</tr>
<tr>
<td>Buchstabe</td>
<td>*</td>
<td>2</td>
</tr>
<tr>
<td>Ton (akustisch)</td>
<td>*</td>
<td>5</td>
</tr>
<tr>
<td>Tonfolge, Melodie</td>
<td>*</td>
<td>9…10</td>
</tr>
<tr>
<td>Bild</td>
<td>*</td>
<td>10</td>
</tr>
</tbody>
</table>

Entscheidungstypen

<table>
<thead>
<tr>
<th>Entscheidungsbedingung</th>
<th>ET</th>
<th>Art der Entscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>nächste Unteraufgabe</td>
<td>*</td>
<td>1 ET Gegenpol zur “Wiederholung”</td>
</tr>
<tr>
<td>Improvisation der Arbeit</td>
<td>*</td>
<td>10 ET Versuch eines neuen Verfahrens</td>
</tr>
</tbody>
</table>

Entscheidungsbedingung

<table>
<thead>
<tr>
<th>Entscheidungsbedingung</th>
<th>EB</th>
<th>Voraussetzungen der Entscheidung</th>
</tr>
</thead>
<tbody>
<tr>
<td>(wenn) falsch</td>
<td>*</td>
<td>1 EB Entscheidung, wenn Ergebnis falsch</td>
</tr>
<tr>
<td>(wenn) unbekannt</td>
<td>*</td>
<td>10 EB Entscheidung für unbekannte Konsequenz</td>
</tr>
</tbody>
</table>

* keine Zeitangaben

<table>
<thead>
<tr>
<th>Standardwörter für Informationsquellen / Geräte</th>
<th>Datenvorgabe</th>
<th>Bedeutung der Standardwörter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zeit</td>
<td>Vorgewicht</td>
</tr>
<tr>
<td>Informationsträger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beleg, Etikett, Display</td>
<td>*</td>
<td>1…10</td>
</tr>
<tr>
<td>Infoträger</td>
<td>*</td>
<td>0…10</td>
</tr>
<tr>
<td>Lagermittel</td>
<td>*</td>
<td>1</td>
</tr>
<tr>
<td>Artikel</td>
<td>*</td>
<td>1…2</td>
</tr>
<tr>
<td>Behälter</td>
<td>*</td>
<td>1</td>
</tr>
<tr>
<td>Fahne "Flag" usw.</td>
<td>*</td>
<td>1</td>
</tr>
<tr>
<td>Lautsprecher/ Kopfhörer</td>
<td>*</td>
<td>2</td>
</tr>
<tr>
<td>Seite (Buch/ Menü)</td>
<td>*</td>
<td>8</td>
</tr>
<tr>
<td>Außenwelt</td>
<td>*</td>
<td>10</td>
</tr>
</tbody>
</table>

Bediengerätemittel

<table>
<thead>
<tr>
<th>Bediengerätemittel</th>
<th>B</th>
<th>Allgemeines "Handwerkszeug" für die Durchführung gezielter Handlungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knopf, Taste</td>
<td>*</td>
<td>1 B Druckschalter mit einer Funktion</td>
</tr>
<tr>
<td>Schreibstift</td>
<td>*</td>
<td>6 B Bleistift, Kugelschreiber usw.</td>
</tr>
<tr>
<td>Steuerknüppel, Kraft</td>
<td>*</td>
<td>10 B Gerät mit Krafteinstellung</td>
</tr>
</tbody>
</table>

* keine Zeitangaben
Bestimmung der Elementarzeiten und der Vorgewichte

Bei der Modellierung des Zeitablaufs wird davon ausgegangen, dass die Aufgabendurchführung gemäß der Aufgabenbeschreibung in Aufgabenelemente eingeteilt wird, die nacheinander abgearbeitet werden müssen. Die Durchführung der Teilelemente sollte so erfolgen, dass zunächst Informationen aufgenommen (Informationsaufnahme), diese verarbeitet (Informationsverarbeitung) und letztlich in Handlungen umgesetzt (Informationsabgabe) werden. Hierbei ist zu berücksichtigen, dass die Durchführung der Aufgaben im Allgemeinen nacheinander erfolgt, aber ebenso auch „gleichzeitig“ ablaufende Aktivitäten (wie z. B. das Vergleichen und Merken einer Artikelnummer) vorkommen können und zugelassen werden müssen.

Sofern eine Aufgabe mehrere Unteraufgaben mit Wahrnehmungselementen, mentalen Operationen und Handlungen beinhaltet, sind alle Unteraufgaben entsprechend der oben beschriebenen Reihenfolge zu erfassen. Das Modell beruht auf der Annahme, dass jedes diskrete Aufgabenteilelement (Aktivität) als zeitlich gewichtete Belastung anzusetzen ist. Dementsprechend wird jedes Aufgabenelement wie folgt angesetzt [siehe Brauser 1990a, S. 5]:

21. Jede Aktivität a_{ij} wird in einer Zeitdauer t_{ij} durchgeführt. Diese Zeitdauer ist entweder in den oben abgebildeten Tabellen enthalten oder sie wird bei der Aufgabendefinition neu bestimmt.

22. Jede Aktivität a_{ij} muss als unterschiedlich belastend angesehen werden, d.h. allen Aktivitäten wird ein ermittelter Belastungsanteil d_{ij} zugeordnet;

23. Dazu erhalten alle durch die Aktivität a_{ij} aufgenommenen, verarbeiteten oder abgegebenen k Informationen (I) sowie die sie erzeugenden Informationsquellen (Q) oder die sie weiterleitenden Bediengeräte (B) ein entsprechendes Vorgewicht d.

24. Alle die für das Aufgabenelement a_{ij} zutreffenden k Vorgewichte d werden addiert zu d_{ijk}.

25. Der Anteil jedes Aufgabenelementes zur Belastung, d_{ij}, ist nunmehr proportional zu seinem Zeitanteil t_{ij} / t_a:

$$d_{ij} = (t_{ij} / t_a) \times d_{ijk} / 10.0$$

Somit ergibt sich die relative Schwierigkeit d_{ij} des Aufgabenelements aj. (Der Divisor 10.0 ergibt sich aus dem Wertebereich der Vorgewichte (Bereich $0 \ldots 1.0$)).

Ermittlung des Belastungsvektors

Auf die Durchführung von Aufgaben wirken verschiedene Einflussfaktoren ein, die bei der Berechnung des so genannten Belastungsvektors berücksichtigt werden. Dabei sind die folgenden fünf Einflussfaktoren zu unterscheiden:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Gruppenbezeichnung</th>
<th>Aufsummierte Unterkomponenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSF₁</td>
<td>Aufgabentyp</td>
<td>$S_1 = \text{Summe der Zeitanteile } t_1 \ldots t_5$</td>
</tr>
<tr>
<td>PSF₂</td>
<td>Aufgabencharakteristik</td>
<td>$S_2 = \text{Summe der Gewichte } c_1 \ldots c_5$</td>
</tr>
<tr>
<td>PSF₃</td>
<td>Personalfaktoren</td>
<td>$S_3 = \text{Summe der Gewichte } p_1 \ldots p_5$</td>
</tr>
<tr>
<td>PSF₄</td>
<td>Umgebungsfaktoren</td>
<td>$S_4 = \text{Summe der Gewichte } e_1 \ldots e_7$</td>
</tr>
<tr>
<td>PSF₅</td>
<td>Systemfaktoren</td>
<td>$S_5 = \text{Summe der Gewichte } s_1 \ldots s_7$</td>
</tr>
</tbody>
</table>

Tabelle 24: Bestandteile des Belastungsvektors (vgl. Brauser 1990a, S. 5)

Für jeden Einflussfaktor wird ein Summenwert ($S_1 \ldots S_5$) gebildet, der sich aus den einzelnen Zeitanteilen (bei PSF₁) und den einzelnen Gewichtungen (PSF₂ bis PSF₅) zusammensetzt. In den nachfolgenden Abschnitten wird die Berechnung der Einflussfaktoren im Einzelnen nach Brauser [siehe Ebd., S. 5 f] beschrieben.

PSF₁ Aufgabentyp - Ermittlung von S_1 (Summe der Zeitanteile $t_1 \ldots t_5$)

Die Summe S_1 ergibt sich aus der Standardisierung der möglichst genauen Beschreibung der Aufgabenelemente und ihrer Zuweisung zu den fünf Unterkomponenten des Einflussfaktors PSF₁ (Aufgabentyp) sowie aus der Festlegung des Zeitbedarfs t_{ij} jedes Aufgabenelements. Die Zeitwerte können aus den Tabellen der Standardwörter (siehe Tabelle 21 bis Tabelle 23) entnommen werden, sind jedoch nur Richtwerte und müssen gegebenenfalls (z.B. durch Messung) angepasst werden.
Werden in der Aufgabenbeschreibung Zahlen \((N)\) genannt (z.B. lies \(N\) Ziffern vom Display), ist ein Faktor \(f = N\) anzusetzen und der Zeitwert des Aufgabenelements um diesen Faktor \(f\) zu erhöhen. Es gilt:

\[
t_{ij}^* = t_{ij} + f.
\]

Die Normierung aller Zeitwerte \(t_{ij}\) auf die festgestellte oder spezifizierte Zeitdauer \(t_a\) der Aufgabendurchführung ergibt die relativen Zeitanteile der Unterkomponenten von PSF\(_1\), die Werte \(t_1…t_5\) [nach Brauser 1990a, S. 6]:

<table>
<thead>
<tr>
<th>Unterkomponente von PSF(_1)</th>
<th>relativer Zeitanteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perzeption (Wahrnehmung)</td>
</tr>
<tr>
<td>2</td>
<td>Detektion</td>
</tr>
<tr>
<td>3</td>
<td>Mentale Verarbeitung</td>
</tr>
<tr>
<td>4</td>
<td>Entscheidung</td>
</tr>
<tr>
<td>5</td>
<td>Handlung</td>
</tr>
</tbody>
</table>

Tabelle 25: Schematische Berechnung der relativen Zeitanteile der Unterkomponenten von PSF\(_1\) (Ebd.)

Die Gesamtzeit \(t_a\) muss die Summe aller vorkommenden Zeiten \(t_{ij}\) für alle sequenziell angesetzten Aufgabenelemente sein [Ebd.]:

\[
t_a = (t_{11} + \ldots + t_{1j}) + (t_{21} + \ldots + t_{2k}) + \ldots + (t_{51} + \ldots + t_{5n}).
\]

Für rein sequenziell durchgeführte Aufgaben ergibt sich daher die Summe \(S_1\) mit

\[
S_1 = t_1 + t_2 + \ldots + t_5 = 1.0.
\]

Neben den rein sequenziell aufeinander folgenden Aufgaben gibt es auch gleichzeitig ablaufende Wahrnehmungs- oder Handlungselemente, was vor allem bei mentalen Operationen der Fall ist. So bleibt beispielsweise durch das gleichzeitige Lesen und Identifizieren einer Artikelnnummer auf einem Beleg die Zeitdauer \(t_a\) unverändert, jedoch tragen die Zeitelemente \(t_{ij}\) dieser Aufgabenelemente zu den relativen Zeitanteilen von \(t_1 \ldots t_5\) bei. Daher erhöht sich lediglich der relative Zeitanteil und es gilt:

\[
S_1 > 1.0.
\]

Somit lässt sich anhand der Komponenten \(S_1\) bereits die Mehrbelastung durch die parallelen mentalen Handlungs- und Wahrnehmungselemente bei der Durchführung
eines Aufgabenelements erkennen, das aus simultan ablaufenden mentalen Prozessen besteht.

PSF₂ Aufgabencharakteristik - Ermittlung der Anteile c₁ und c₂ der Summe S₂
Im vorliegenden Abschnitt wird zunächst dargestellt, wie die beiden Unterkomponenten c₁ und c₂ ermittelt werden. Anschließend erfolgt die Beschreibung des Ansatzes für die übrigen Gewichte (siehe Abschnitt PSF_{2 bis PSF}₅ - Ermittlung der Summen S_{2 bis S}₅).

Die Gewichtung der Unterkomponenten c₁ und c₂ wird ebenfalls durch die standardisierte Aufgabenbeschreibung mit Hilfe der Tabellen Tabelle 21 bis Tabelle 23) festgelegt. Die Berechnung der beiden Unterkomponenten wird nach Brauser [siehe Brauser 1990a, S. 6 f] wie folgt durchgeführt:

27. c₁ (Komplexität):

\[c_1 = \frac{m}{15} \]
mit \(m \) = Anzahl aller Aufgabenelemente
(für \(m > 15 \) gilt \(c_1 = 1.0 \))

28. c₂ (Schwierigkeit):

c₂ ist das arithmetisches Mittel der Vorgewichtsanteile \(d_{ij} \) der \(j \) Aktivitäten (Aufgabenelemente) \(a_{ij} \) in den \(i \) Gruppen (\(i = 1,2,\ldots,5 \)). Die Vorgewichtsanteile \(d_{ij} \) werden wie folgt berechnet:

\[d_{ij} = \left(\frac{t_{ij}}{t_a} \right) \cdot \frac{d_{ijk}}{10}. \]
\(d_{ijk} \) sei die Summe der \(k \) Vorgewichte \(d \) vom Aufgabenelement \(a_{ij} \). Sind in der Aufgabenbeschreibungen Zahlen (\(N \)) genannt, so ist das Vorgewicht um den Faktor \(f = N \) zu erhöhen:

\[d^* = d + f. \]

Der Teiler 10 ergibt sich aus dem Bereich der Vorgewichte (0...10). Insgesamt wird c₂ wie folgt ermittelt:

\[c_2 = \sum d_{ij} / m^*. \]
m* ist die Anzahl aller Aufgabenelemente a_{ij} in zusammengehörenden „Aktivitätsgruppen“ (also den Aktivitäten einer bestimmten Komponente), wobei immer m* ≤ m ist.

Wird eine Aktivität der gleichen Art a (z. B. Lesen, Art: W1) n-mal innerhalb einer Aufgabe durchgeführt, so trägt n zu m (Anzahl aller Aufgabenelemente) n-mal bei, zu m* jedoch nur einmal. Dies wird nach Brauser [nach Brauser 1990, S. 5] damit begründet, dass der arithmetische Mittelwert \(d_{ij} / m \) zu klein für eine angemessene Gewichtung werden kann, vor allem, wenn sehr viele Aufgabenelemente der gleichen Art auftreten.

PSF₂ bis PSF₅ - Ermittlung der Summen S₂ bis S₅

Die Gewichtung der übrigen Einflussfaktoren PSF₂ bis PSF₅ (c₃ … c₅, p₁…p₅, e₁…e₇, s₁…s₇) erfolgt nach Empfehlungen, die in den nachfolgenden Tabellen (Tabelle 26, Tabelle 27) zusammengefasst sind. Danach erhalten Einflussfaktoren, die nicht wirksam sind, die Gewichtung 0.0 und Faktoren mit einem großen Einfluss den Faktor 1.0. Die Bestimmung der Ausprägungen erfolgt individuell durch den Anwender des Verfahrens.
PSF₂ - Aufgabencharakteristik

<table>
<thead>
<tr>
<th>Definition des PSF</th>
<th>Definition des Gewichtes</th>
</tr>
</thead>
</table>
| 0.0 ← ─────────────── 0.5 ─────────────── 1.0 │

c₁ Komplexität
Wird berechnet als
\[c₁ = m / 15 \text{ (für } m < 15) ; c₁ = 1.0 \text{ (für } m > 15) \]

c₂ Schwierigkeit
0.0 < c₂ = Arithmetisches Mittel der \(d_{ij} \) <= 1.0
wobei \(d_{ij} = t_{ij} / l_{ij} * d_{xy} / 10 \) (i = 1,2,... 5; j = 1,2,...m)

c₃ Korrigierbarkeit
Ist die Korrektur eines Fehlers möglich? (Zeitreserve und / oder techn. Möglichkeiten zur Korrektur)
sicher möglich möglich unmöglich

c₄ Ereignistyp
Wie häufig wird die Aufgabe durchgeführt? Ist die Durchführung gewohnt? (z.B. Routine)
regelmäßig/häufig ab und zu selten/sporadisch
gehönt vorhersehbar überraschend

c₅ Risikotyp
Die Folgen einer Fehlhandlung sind
ohne Risiko mäßiges Risiko katastrophal

PSF₃ - Personalfaktoren

<table>
<thead>
<tr>
<th>Definition des PSF</th>
<th>Definition des Gewichtes</th>
</tr>
</thead>
</table>
| 0.0 ← ─────────────── 0.5 ─────────────── 1.0 │

p₁ Erfahrung/ Übung
Die Erfahrung des Operateurs bzgl. der Aufgabe ist
sehr hoch mittel sehr gering

p₂ Aufmerksamkeit/ Wachsamkeit
Die Aufmerksamkeit / Wachsamkeit des Operateurs ist
sehr hoch mittel sehr gering

p₃ Arbeitstempo/ Reaktionsgeschwindigkeit
Das Arbeitstempo bzw. die Reaktionsgeschwindigkeit des Operateurs ist
sehr hoch mittel sehr gering

p₄ Motivation
Der Operateur ist in Bezug auf seine Aufgabe
hoch motiviert mäßig motiviert ablehnend

p₅ Sonstige Faktoren
Dieser Faktor wird allgemein auf 1.0 gesetzt - das würde dem "erfahrenen Normaloperateur" entsprechen

Tabelle 26: Schematische Erläuterung der Gewichtungsmethode für Einflussfaktoren (1)
(nach Brauser 1990a, S. 39 f)
Tabelle 27: Schematische Erläuterung der Gewichtungsmethode für Einflussfaktoren (2) (nach Brauser 1990a, S. 40)

Berechnung der Zuordnung zur Zuverlässigkeitsklasse ZK und der Fehlerwahrscheinlichkeit HEP

Nach Brauser [siehe Brauser 1990a, S. 8] wird die Berechnung der Zuverlässigkeitsklasse ZK und der Wahrscheinlichkeit der menschlichen Arbeitsfehler HEP wie folgt durchgeführt:

<table>
<thead>
<tr>
<th>Definition des PSF</th>
<th>Definition des Gewichtes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 ← — — — — — — — — — — — — — 0.5 — — — — — — — — — — — — — → 1.0</td>
<td></td>
</tr>
</tbody>
</table>

PSF4 - Umweltfaktoren

- **e1 Klimafaktoren**: Klimaparameter (Temperatur, Feuchte, Luftdruck) sind
ideal/normal / schon störend / extrem störend
- **e2 Beleuchtung**: Die Beleuchtungsparameter des Arbeitsplatzes
ideal/normal / nicht angemessen / sehr schlecht
- **e3 Kontamination**: Kontamination des Arbeitsplatzes (Schmutz, Staub, Gase etc.)
könnte keine untolerierbar / erträglich / merkbar / störend / sehr störend
- **e4 Lärm**: Akustische Geräusche/Lärmspegel mit Einfluss auf die Arbeit
normal / < 45 dBA / erträglich / merkbar / gefährlich / > 120 dBA
- **e5 Vibrationen**: Vibrationen/mechanische Schwingungen sind bei der Arbeit
nicht merkbar / merkbar / störend / stark / gefährlich
- **e6 Beschleunigungen**: Linien- oder rotatorische Schwingungen sind
niedrig / mäßig / gerade tolerierbar / stark / unfähig
- **e7 externe Bedrohung**: Ist mit externen Bedrohungen (Beschuss, Feuergefahr, Glatteis, Sturm etc.) zu rechnen?
nein / mit geringer / starker / sehr starker / Wahrscheinlichkeit

PSF5 - Systemfaktoren

- **s1 Schnittstelle/ Werkzeug**: Wie beeinflusst die Schnittstelle/das Werkzeug die Arbeit? (hier sind nur negative Einflüsse berücksichtigt)
nicht / wenig / mäßig / stark / sehr stark
- **s2 Informationsrückkopplung**: Ist ausreichend Information über den Systemzustand vorhanden?
ja, immer / nicht ausreichend / sehr wenig
- **s3 Systemsecurity**: Wie ist die Bedienungssicherheit des Systems?
groß / mäßig / nicht ausreichend / gefährlich
- **s4 Technische Zuverlässigkeit**: Das bediente System (Gerät) ist
zuverlässig / unzuverlässig
- **s5 Zeitstress**: Die vorgesehene Zeitspanne für die Aufgabendurchführung
mit Reserve / gerade ausreichend / zu kurz
- **s6 Arbeitsdauer**: Durchführung der Arbeitsaufgabe nach einer Arbeitszeit von
< 2 Stunden / ca. 4 Stunden / > 6 Stunden
- **s7 Arbeits/Aufgabenorganisation**: Gibt es adequate Werkzeuge/Geräte/Handbücher/Instruktionen?
ja / nicht so wie nötig / unzureichend
Zunächst wird ein Zuverlässigkeitswert K bestimmt. Dazu wird zunächst die Summe G der quantitativen Ausprägungen der Einflussfaktoren $S_1 \ldots S_5$ gebildet [siehe Schindele 1996, S. 47]:

$$G = S_1 + S_2 + S_3 + S_4 + S_5.$$

Nach Ermittlung der Summe der Einzelfaktoren G wird diese in eine logarithmische Funktion eingesetzt und daraus der Zuverlässigkeitswert K gebildet:

$$K = 1.2 \times G \times \log G + S_1$$

Aus dem Zuverlässigkeitswert wird dann die Zuverlässigkeitsklasse ZK, in die die untersuchte Aufgabe eingeordnet wird, wie folgt bestimmt:

$$ZK = \begin{cases}
\text{Integer (K)} & \text{für } K < 10 \\
10 & \text{für } K \geq 10
\end{cases}$$

Durch die Integer-Funktion wird aus jeder reellen Zahl zunächst die nächst kleinere ganze Zahl gebildet. Liegt der Zuverlässigkeitswert über 10 wird immer von einer Fehlhandlungswahrscheinlichkeit von 1.0 (die Fehlhandlungswahrscheinlichkeit liegt bei 100%) ausgegangen.

Die Basis zur Klassifizierung der Aufgaben nach der Zuverlässigkeit ihrer Durchführung bildet die Einteilung des Bereichs der Fehlerwahrscheinlichkeit (0 bis 10) in zehn Intervalle mit monoton steigender Intervallbreite (siehe Abbildung 50). Beispielsweise umfasst die „Zuverlässigkeitsklasse 2“ das Intervall zwischen 0.001 und 0.0033. Die Einteilung der ZK-Skala wurde auf andere existierende Skalen zur subjektiven Abschätzung der menschlichen Leistung abgestimmt. Dabei wird grundsätzlich davon ausgegangen, dass kein Mensch fehlerfrei arbeiten kann. Daher wird für die Fehlhandlungswahrscheinlichkeit bei der Durchführung einer Aufgabe die Untergrenze von 0.0001 angenommen [vgl. Brauser 1992, S. 126].
Nach Bestimmung der Zuverlässigkeitsklasse wird die Fehlerwahrscheinlichkeit HEP aus der linearen Interpolation zwischen unterer und oberer Grenze der betrachteten Klasse ZK (siehe Abbildung 50) ermittelt [siehe Brauser 1990a, S. 8]:

$$HEP = \text{Fract} (K) \cdot D (ZK) + HEP_{\text{min}} (ZK)$$

wobei

$$D (ZK) = HEP_{\text{max}} (ZK) - HEP_{\text{min}} (ZK),$$

die Intervallbreite von ZK ist.

Hierbei ist

$$\text{Fract} (K) = K - \text{Integer} (K).$$

4.4.3 Vorgehensweise zur Ermittlung von Fehlhandlungsannahmewahrscheinlichkeiten

In den vorangegangenen Abschnitten wurden Möglichkeiten erarbeitet, mit denen Kommissionierprozesse abgebildet, fehlerbeeinflussende Prozessschritte ermittelt
sowie eine Fehleranalyse vorgenommen werden können. Auf Basis dieser Überlegungen wird im Folgenden eine Vorgehensweise vorgestellt, anhand derer Fehlhandlungs- wahrscheinlichkeiten abgeschätzt werden können. Ziel ist die Bewertung der Kommissionierprozesse zur Ableitung von Optimierungspotenzialen. Die Vorgehensweise umfasst folgende Schritte, die im Anschluss beschrieben werden:

Abbildung 51: Vorgehensweise zur Ermittlung von Fehlhandlungswahrscheinlichkeiten

Die Grundlage zur Ermittlung der Fehlhandlungs- wahrscheinlichkeiten für die Optimierung der Kommissionierprozesse bilden sowohl die Kenntnis als auch die Dokumentation der Kommissionierprozesse des betrachteten Kommissionierbereichs.

Prozessdarstellung
Die Aufgabe der Kommissionierung liegt in der Erfüllung von Kundenaufträgen. Dabei orientieren sich die Prozesse der Kommissionierung am Auftragsdurchlauf. Um eine Prozessanalyse durchführen zu können, müssen die einzelnen Aktivitäten

Datenaufnahme

Ausgangspunkt für eine systematische Analyse der Fehler bildet eine entsprechende Klassifizierung. Durch die Einordnung der Fehler können diese strukturiert erfasst und nach gleichen Merkmalen zusammengefasst werden, so dass eine bessere Analysierbarkeit gegeben ist. Darüber hinaus können mögliche Potenziale besser abgeschätzt und dementsprechend Verbesserungsmaßnahmen eingeleitet werden. Zur Aufschlüsselung der Kommissionierfehler wird die in Abschnitt 4.3.1 vorgenommene Unterteilung in die Fehlerarten Auslassungs-, Mengen-, Typ- und Zustandsfehler herangezogen.

Für die Ermittlung der Fehlerdaten stehen verschiedene Möglichkeiten zur Verfü­gung. Neben der Durchführung von unternehmensinternen Schätzungen, können Fehlerdaten auch anhand interner Kontrollen (intern entdeckte Fehler) oder durch Auswertung von Daten aus Kundenreklamationen (extern entdeckte Fehler) ermittelt werden.

Prozessanalyse
Kommissionierfehlerquoten liefern Aussagen über die relativen Anteile der verschiedenen Fehlerarten, lassen jedoch keine Rückschlüsse auf die Fehleranfälligkeit der Prozesse zu. Zur Optimierung der Kommissionierqualität ist eine Ermittlung der Prozesse erforderlich, die die Fehlerentstehung beeinflussen. Im Rahmen der Prozessanalyse wird daher festgestellt, wo und unter welchen Einflüssen Fehler in der Kommissionierung entstehen.
Zur Prozessanalyse wird der Fehlerkatalog (siehe Abschnitt 4.3.2) herangezogen. Die Analyse der Abläufe erfolgt auf Basis der im ersten Schritt ermittelten und dargestellten Prozesse.

Den Ausgangspunkt für die prozessbezogene Ermittlung potenzieller Fehler und Einflussfaktoren bildet die Aufnahme der Fehlerdaten. Die weitergehenden Betrachtungen erfolgen entsprechend der im Unternehmen erfassten Fehlerdaten kategorisiert nach Fehlerarten. Anhand des Fehlerkatalogs werden die Prozessschritte identifiziert, die die im Unternehmen vorkommenden Fehler herbeiführen können. Hiermit wird der Untersuchungsbereich für die folgenden Schritte eingegrenzt.

Das Ergebnis dieses Schrittes ist Basis für eine detaillierte Betrachtung der Fehler, welche im Folgenden dargestellt wird.

Qualitative Bewertung der Prozesse

Eine Optimierung der Kommissionierqualität setzt voraus, dass das Optimierungspotenzial abgeschätzt werden kann. Durch eine qualitative Bewertung der Teilprozesse kann deren Einfluss auf die Entstehung von Fehlern und damit auf die Kommissionierqualität eingeordnet werden. Die Bewertung erfolgt mit Hilfe der in Abschnitt 0 vorgestellten Kommissionier-FMEA. Dabei werden im Wesentlichen drei Schritte durchlaufen: Die Strukturierung der Teilprozesse, die Risikoanalyse sowie die Risikobewertung.

Abschließend erfolgt eine Bewertung der Risiken der einzelnen Fehler hinsichtlich Auftreten, Bedeutung und Entdeckung.

Ermittlung von Zeiten, Kosten, Auftretens- und Entdeckungswahrscheinlichkeiten

<table>
<thead>
<tr>
<th>Verbale Beschreibung</th>
<th>Bewertungszahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unwahrscheinlich</td>
<td>1</td>
</tr>
<tr>
<td>Sehr gering</td>
<td>2-3</td>
</tr>
<tr>
<td>Gering</td>
<td>4-6</td>
</tr>
<tr>
<td>Mäßig</td>
<td>7-8</td>
</tr>
<tr>
<td>Hoch</td>
<td>9</td>
</tr>
<tr>
<td>Sehr hoch</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verbale Beschreibung</th>
<th>Bewertungszahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedeutungslos</td>
<td>1</td>
</tr>
<tr>
<td>Gering</td>
<td>2-4</td>
</tr>
<tr>
<td>Mittelschwer</td>
<td>5-7</td>
</tr>
<tr>
<td>Schwerwiegend</td>
<td>8-9</td>
</tr>
<tr>
<td>Äußerst schwer</td>
<td>10</td>
</tr>
</tbody>
</table>

Die Bewertung der Entdeckungswahrscheinlichkeit gibt an, inwieweit der Fehler erkannt werden kann und liefert somit Hinweise auf mögliche Schwachstellen in den Prozessen. Ein hoher Wert bedeutet beispielsweise, dass der Fehler nur gelegentlich oder zufällig entdeckt wird (siehe Tabelle 30). Daraus ergeben sich Verbesserungspotenziale hinsichtlich der Gestaltung der Prozesse. Es gilt, die Prozesse zu verbessern (z. B. durch eine bessere Informationsbereitstellung) bzw. sind entsprechende Maßnahmen zu treffen, die externe Fehler vermeiden (wie z. B. interne Prüfungen).

<table>
<thead>
<tr>
<th>Entdeckungswahrscheinlichkeit</th>
<th>Bewertungszahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoch</td>
<td>1</td>
</tr>
<tr>
<td>Es besteht nahezu keine Möglichkeit, dass der Fehler unentdeckt bleibt und die fehlerhafte Einheit den Kunden erreicht</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>2-5</td>
</tr>
<tr>
<td>Der Fehler ist relativ offensichtlich und wird aufgrund von Prüfungen entdeckt</td>
<td></td>
</tr>
<tr>
<td>Gering</td>
<td>6-7</td>
</tr>
<tr>
<td>Der Fehler ist zwar offensichtlich, die vorgesehenen Prüfungen sind aber nur bedingt geeignet</td>
<td></td>
</tr>
<tr>
<td>Unwahrscheinlich</td>
<td>8-9</td>
</tr>
<tr>
<td>Der Fehler wird nur gelegentlich und eher zufällig entdeckt</td>
<td></td>
</tr>
<tr>
<td>Unmöglich</td>
<td>10</td>
</tr>
<tr>
<td>Eine Prüfung ist nicht vorgesehen oder die Prüfmaßnahme ist gänzlich ungeeignet den Fehler zu entdecken</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 30: Bewertung der Entdeckungswahrscheinlichkeit (vgl. Heinz und Menk 1997, S. 130)

Aus den Einzelwerten ergeben sich die Risikoprioritätszahlen (RPZ), die eine Bewertung in verschiedener Hinsicht ermöglichen. Durch die Ermittlung der RPZ einzelner Prozessschritte können diese klassifiziert werden, so dass die Prozesse mit dem größten Optimierungspotenzial identifiziert werden. Weiterhin kann eine Klassifizierung der Prozesse unter Einbeziehung einzelner Fehlerarten oder nach Fehlerursachen (konventionelle Bewertung) erfolgen.

Klassifizierung der Prozesse
Da ein Fehler mehrere Ursachen haben kann, ergeben sich dementsprechend mehrere Risikoprioritätszahlen. Um eine Klassifizierung der Prozesse vornehmen zu können, müssen diese Werte verdichtet werden. Dabei ist zu beachten, dass bei

Die nachfolgende Abbildung 52 veranschaulicht beispielhaft die Risikoanalyse und Risiko-bewertung der drei Grundprozesse „Identifikation des Bereitstellortes“, „Identifikation des Artikels“ und „Quittierung der Entnahme“.

Abbildung 52: Risikoanalyse und Risikobewertung

Klassifizierung der Teilprozesse nach Fehlerarten

Klassifizierung der Fehlerursachen nach Fehlerarten

Zur Klassifizierung der Fehlerursachen nach Fehlerarten erfolgt die Bewertung entsprechend der konventionellen FMEA (siehe Abschnitt 0), bei der eine Priorisierung der Fehlerursachen durchgeführt wird. Dazu werden für jede Fehlerart alle möglichen Fehlerursachen ermittelt. Jede Fehlerursache wird mit einer Risikoprioritätszahl bewertet. Bei mehreren Risikoprioritätszahlen je Fehlerart und Fehlerursache wird wie bei der Beurteilung der Prozesse jeweils nur der größte RPZ-
Wert in die Gesamtbewertung übernommen, so dass nur das größte Risikopotenzial in die Verteilung eingeht [vgl. Arnold 2004, S. B3-66 f].

Die nachfolgende Abbildung 53 zeigt beispielhaft für Typfehler mögliche Fehlerursachen sowie deren RPZ-Werte.

Abbildung 53: Bewertung der Fehlerursachen nach Fehlerarten

Die Aufschlüsselung der Fehlerquote erfolgt über die Verteilung der Risikoprioritätszahlen aller berücksichtigten Fehlerursachen. In der nachfolgenden Tabelle ist die Aufschlüsselung der Fehlerquote für das oben angeführte Beispiel veranschaulicht.

<table>
<thead>
<tr>
<th>Fehlerursachen</th>
<th>RPZ</th>
<th>Anteil an RPZ_{gesamt}</th>
<th>Fehlerquote nach Fehlerursache [pro Position]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ermüdung des Mitarbeiters</td>
<td>126</td>
<td>23 %</td>
<td>0,66 %</td>
</tr>
<tr>
<td>schlechte Informationsbereitstellung</td>
<td>216</td>
<td>39 %</td>
<td>1,13 %</td>
</tr>
<tr>
<td>ähnliche Artikel lagern nebeneinander</td>
<td>162</td>
<td>29 %</td>
<td>0,85 %</td>
</tr>
<tr>
<td>schlechte Artikelkennzeichnung</td>
<td>48</td>
<td>9 %</td>
<td>0,25 %</td>
</tr>
<tr>
<td>Typfehlerquote gesamt [pro Position]</td>
<td></td>
<td></td>
<td>2,90 %</td>
</tr>
</tbody>
</table>

Tabelle 31: Aufschlüsselung der Fehlerquote nach Fehlerursache

Zur weiteren quantitativen Bewertung der Kommissionierprozesse erfolgt abschließend eine Quantifizierung der Fehlhandlungswahrscheinlichkeiten einzelner Prozessschritte mit Hilfe des Verfahrens ESAT sowie eine Ermittlung der Gesamtfehlerwahrscheinlichkeit mit einem Ereignisbaum.

Quantitative Bewertung der Prozesse

Aufgabenbeschreibung

Bestimmung der Elementarzeiten und der Vorgewichte

Ermittlung des Belastungsvektors

Da nicht alle Einflussfaktoren für die Kommissionierung relevant sind, werden nachfolgend nur diejenigen aufgegriffen, die in der Regel eine Rolle spielen und somit einen Wert größer null haben können.
Personalfaktoren

Erfahrung / Übung

Aufmerksamkeit / Wachsamkeit

In Abhängigkeit von der Arbeitsdauer und der Monotonie der Tätigkeit wird die Aufmerksamkeit des Kommissionierers als hoch (null) bzw. niedrig (eins) eingestuft.
Arbeitstempo

Motivation

Umgebungsfaktoren

Klima
Das Klima in Bezug auf die Temperatur kann allgemein als normal (null) eingestuft werden, wenn diese bei 15 bis 25 Grad Celsius liegt. Ein Einfluss durch das Klima ist beispielsweise gegeben, wenn unter besonderen klimatischen Bedingungen kommissioniert wird, wie beispielsweise im Tiefkühlbereich (eins).

Beleuchtung

Systemfaktoren

Informationsrückkopplung
In dem Faktor Informationsrückkopplung kommt zum Ausdruck, inwieweit Informationen über den Systemzustand übermittelt werden. Hierzu zählt beispielsweise die Mitteilung darüber, dass die Anzahl der Bereitstelleinheiten kleiner ist als die geforderte Mindestreserve oder dass falsche Einheiten bereitgestellt worden sind. Sofern eine permanente Weitergabe der Informationen gegeben ist, wird der Wert null angenommen. Finden sehr wenige Rückmeldungen statt, wird dies mit eins bewertet.

Arbeitsdauer
Ermittlung von Zeiten, Kosten, Auftretens- und Entdeckungswahrscheinlichkeiten

Zeitstress

Tabelle 32 stellt die angeführten Einflussfaktoren mit Beispielen zusammenfassend dar.

<table>
<thead>
<tr>
<th>Definition des PSF</th>
<th>Definition des Gewichtes</th>
<th>Beispiel</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSF1 - Personalfaktoren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p1 Erfahrung / Übung</td>
<td>sehr hoch Kommissionierer, die mit dem System vertraut sind und ggf. über eine langjährige Berufserfahrung verfügen</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mittel Vollzeitkräfte, die noch nicht lange mit dem System vertraut sind</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sehr gering Aushilfen, ungelerte Saisonkräfte</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>p2 Aufmerksamkeit / Wachsamkeit</td>
<td>sehr hoch regelmäßige Arbeitsdauer und Pausen; wechselnde Aufgabenbereiche</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mittel normaler Betrieb</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sehr gering bei Schichtbetrieb für Nachtschichten</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>p3 Arbeitstempo / Reaktionsgeschwindigkeit</td>
<td>sehr hoch bei Eilaufträgen</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mittel bei Entlohnung nach einem Prämienystem</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sehr gering normaler Betrieb ohne Leistungsanreize</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>p4 Motivation</td>
<td>hoch motiviert bei Zahlung von Prämienlohn</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mäßig motiviert bei fehlender Rückmeldung über das Arbeitsergebnis</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ablehnend bei schlechtem Betriebsklima</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PSF2 - Umweltfaktoren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e1 Klimafaktoren</td>
<td>ideal / normal Temperatur am Lagerort: 15-25 Grad Celsius</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>schön störend Zugluft am Lagerort</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>extrem störend Tiefkühlfeld, Temperatur < 0 Grad Celsius</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>e2 Beleuchtung</td>
<td>ideal / normal (abhängig von der Messung am jeweiligen Kommissionierarbeitsplatz)</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nicht angemessen</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sehr schlecht</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PSF3 - Systemfaktoren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s2 Informationsrückkopplung</td>
<td>ja, immer Kommissionierer wird über seine Fehler immer informiert</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nicht ausreichend Fehler werden entdeckt, aber nicht immer gemeldet</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sehr wenig keine Rückmeldung über den Systemzustand</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>s3 Zeitstress / Zeitzustand</td>
<td>ausreichend bei ausreichender Zeit / Entlohnung mit Zeitlohn</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gerade ausreichend bei der Vorgabe von Zeiten, die gerade ausreichend sind</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>zu kurz bei der Durchführung von Eilaufträgen</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>s4 Arbeitsdauer (Ermüdung)</td>
<td>< 2 Stunden (bei den Zeitanzeigen wird davon ausgegangen, dass ohne Unterbrechung gearbeitet wird)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ca. 4 Stunden</td>
<td>0,5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>> 6 Stunden</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Berechnung der Zuordnung der Zuverlässigkeitsklasse ZK und der Fehlerwahrscheinlichkeit HEP

Ermittlung der Gesamtfehlerwahrscheinlichkeit

Zusammenfassende Darstellung

In der nachfolgenden Abbildung 54 ist die Vorgehensweise zur Ermittlung von Fehlhandlungswahrscheinlichkeiten nochmals zusammenfassend dargestellt.
Abbildung 54: Zusammenfassung der Vorgehensweise zur Ermittlung von Fehlhandlungswahrscheinlichkeiten
4.5 Qualitätsprüfung in Kommissionierung und Verpackung

4.5.1 Zeit- und Kostenermittlung bei der Qualitätsprüfung

Um die Planzeiten bilden zu können, werden Ablauffolgegliederungen erstellt. Die Handhabungsvorgänge werden in die Handhabung des Prüfmittels und die Handhabung des Prüfgutes (Artikel) untergliedert (siehe Abbildung 55).

Abbildung 55: Ablauffolgegliederung für Prüftätigkeiten in der Kommissionierung

Die entwickelten Planzeitwerte für Prüftätigkeiten in der Kommissionierung stellen ein anwendungsorientiertes und aufwandsarmes Hilfsmittel zur Planung und Bewertung
von Prüfmaßnahmen dar. Da die Kosten einer Prüfung durch Prüfpersonal im Bereich der Kommissionierung in erster Linie durch die Personalkosten bestimmt werden, liefern die Planzeitwerte in Verbindung mit den entsprechenden Personalkostensätzen (Stundenentgelt x Lohnnebenkosten) die Personalkosten bei den Prüfkosten. Anders sieht dies selbstverständlich bei automatisierten Fertigungen aus.

Ermittlung der Kosten
Wie bereits in Kapitel 4.2 erläutert, sind im Zuge der Qualitätsoptimierung bei der Kostenbetrachtung insbesondere die qualitätsbezogenen Kosten zu betrachten. Diese umfassen Kosten für präventive Maßnahmen, Qualitätsprüfungen sowie die Bearbeitung und Beseitigung interner und externer Fehler.

Im Rahmen der Prüfung sind die verursachten Kosten für Personal, Material, eingesetztes Kapital, Raum und innerbetriebliche Leistungen den Prüfkosten zuzurechnen [Pfeifer 01].

Personalkosten werden als Prüfkosten berücksichtigt, die für die Prüftätigkeiten selbst sowie allgemeine Tätigkeiten (z.B. Gruppenleiter) anfallen.

Zu den Kapitalkosten gehören zum einen Kosten für Prüfmittel, zum anderen aber auch Kosten für entsprechende Transportmittel oder Büroenrichtungen. Ebenfalls werden Raumkosten für den Platz, den Prüfer oder Prüfmittel in Anspruch nehmen, hier zu gerechnet.

Zu den Materialkosten zählen Kosten für Hilfs- und Betriebsstoffe, wie Kosten für Ersatzteile für Prüfanlagen, Büromaterial oder Energiekosten.

Innerbetriebliche Leistungen, die zu den Prüfkosten zählen, fallen bei der Qualitätsprüfung durch die Überwachung und Instandhaltung von Prüfmitteln an.

Die nicht direkt prozessbezogenen Kosten für Ausschuss, Kulanz und Gewährleistung sowie möglicherweise anzusetzende kalkulatorische Kosten (Opportunitätskosten) usw. werden als prozessübergreifende Kosten berücksichtigt, da sie nicht unmittelbar einem der Kommissionier-, Verpackungs-, Prüf- oder Retourenprozesse zugeordnet werden können.
4.5.2 Ermittlung der Entdeckungswahrscheinlichkeit

Da bei der Durchführung eines Prozesses und der Qualitätsprüfung Abhängigkeiten existieren, ist es bei der Berechnung der Wahrscheinlichkeit nötig, dass die einzelnen Prozesse der Kommissionierung nicht getrennt voneinander betrachtet werden. So setzen sich die einzelnen Fehlerteile aus den Parametern der Kommissionierung, der Streuung des Prüfprozesses und der systematischen Messabweichung zusammen. Im folgenden Bild ist der Zusammenhang zwischen der Kommissionierung und der Prüfung für ein zweiseitig toleriertes Qualitätsmerkmal dargestellt.[Crostack03]
Abbildung 56: Zusammenhang zwischen der Kommissionierung und der Prüfung (abgeleitet nach Nusswald [Nusswald98])

Bei genauerer Betrachtung der Fehlerarten sind beim Fehler 1. Art die beiden Anteile \(\alpha_u\) und \(\alpha_o\) zu differenzieren, da die weitere Behandlung der fehlerhaften Kommissionierungen oberhalb bzw. unterhalb des Toleranzfeldes bei kontinuierlichen Merkmalen wie dem Wiegen oder das geometrische Scannen von Gütern unterschiedlich sein kann. Die im Folgenden dargestellten Formeln gelten für den Fall, dass sowohl die Merkmalswerte und die Prüfwerte normalverteilt sind. Grundsätzlich können jedoch auch andere Verteilungen angenommen werden.
Der als unterhalb der Toleranz klassifizierte Fehleranteil 1. Art α_u wird wie folgt berechnet [Nürnberg99]:

$$
\alpha_u = \int_{T_u}^{T_o} \varphi \left(\frac{x - \mu_B}{\sigma_B} \right) \cdot \Phi \left(\frac{T_o - (x + s)}{\sigma_p} \right) dx
$$

mit:

φ Verteilungsfunktion der Standardnormalverteilung

Φ Dichtefunktion der Standardnormalverteilung

T_u untere Toleranzgrenze

T_o oberer Toleranzgrenze

μ_B Merkmal der Kommissionierung

σ_B Streuung der Kommissionierung

σ_P Streuung des Prüfprozesses

s systematische Messabweichung

Der Fehleranteil α_o ergibt sich wie folgt:

$$
\alpha_o = \int_{-\infty}^{T_u} \varphi \left(\frac{x - \mu_B}{\sigma_B} \right) \cdot \left[1 - \Phi \left(\frac{T_o - (x + s)}{\sigma_p} \right) \right] dx
$$

In Analogie hierzu lässt sich der Fehler 2. Art durch die zwei Anteile β_u und β_o berechnen, wobei es in diesem Fall in der Regel unbedeutend ist, ob der wahre Merkmalswert des Kommissionierauftrags oberhalb oder unterhalb der Toleranz liegt:

$$
\beta_u = \int_{-\infty}^{T_u} \varphi \left(\frac{x - \mu_B}{\sigma_B} \right) \cdot \left[\Phi \left(\frac{T_o - (x + s)}{\sigma_p} \right) - \Phi \left(\frac{T_o - (x + s)}{\sigma_p} \right) \right] dx
$$

$$
\beta_o = \int_{T_o}^{\infty} \varphi \left(\frac{x - \mu_B}{\sigma_B} \right) \cdot \left[\Phi \left(\frac{T_o - (x + s)}{\sigma_p} \right) - \Phi \left(\frac{T_o - (x + s)}{\sigma_p} \right) \right] dx
$$

\begin{align*}
 p_u &= \alpha_u + \Phi \left(\frac{T_u - \mu_B}{\sigma_B} \right) - \beta_u \\
 p_o &= \alpha_o + 1 - \Phi \left(\frac{T_o - \mu_B}{\sigma_B} \right) - \beta_o
\end{align*}

mit α_u / α_o: Fehleranteil 1. Art unterhalb / oberhalb des Toleranzfeldes

β_u / β_o: Fehleranteil 2. Art unterhalb / oberhalb des Toleranzfeldes

Da die dargestellten Integrale analytisch nicht lösbar sind, müssen diese bei der Simulation numerisch angenähert werden.

Aus den durch das Prüfmittel oberhalb und unterhalb des Toleranzfeldes entdeckten Fehleranteilen p_u und p_o sind die merkmalsbezogenen, durch das Prüfmittel entdeckten Ausschuss- und Nacharbeitsanteile p_{Aus} und p_{Nach} zu bestimmen. Unter Ausschuss sind hierbei Aufträge zu verstehen, die durch Nacharbeit nicht mehr effizient korrigiert werden können.

In der Kommissionierung wird die Position, bzw. der Auftrag in der Regel immer dann als Ausschuss deklariert, wenn der Prüfwert außerhalb der Toleranz liegt, so dass sich p_{Aus} und p_{Nach} wie folgt ergeben:

$p_{Aus} = p_o + p_u$ und $p_{Nach} = 0$

Im Rahmen der Simulation wird für jedes Merkmal definiert, wie der Kommissionierauftrag zu behandeln ist., wenn bei der Prüfung eine Nicht-Konformität in Bezug auf das Merkmal festgestellt wird, so dass die merkmalsbezogenen, durch das Prüfmittel entdeckten Ausschuss- und Nacharbeitsanteile p_{Aus} und p_{Nach} bei
der analytischen Kostenberechnung automatisch vom Programmsystem ermittelt werden können.

Die bisher dargestellten Formeln gelten für ein zweiseitig toleriertes Qualitätsmerkmal. Es wird festgestellt, welche Aufträge die Qualitätsanforderungen nicht erfüllen, so dass aus dem Fehleranteil p_{u} oder p_{o} eines Merkmals der merkmalsbezogene, durch das Prüfmittel entdeckte Nacharbeitsanteil p_{Nach} bzw. Ausschussanteil p_{Aus} abgeleitet werden kann. An dieser Stelle sei ausdrücklich darauf hingewiesen, dass sich die Fehleranteile p_{Nach} und p_{Aus} immer nur auf den Anteil geprüfter Kommissionieraufträge und nicht auf die gesamten Aufträge beziehen. Dies ist insbesondere im Zusammenhang mit einer Stichprobenprüfung von Bedeutung.

Die Normalverteilung gilt für einen Wertebereich von $-\infty$ bis $+\infty$. Auf Grund der Tatsache, dass bei der Kommissionierung die realen Merkmalswerte in der Regel jedoch nur in einem begrenzten Wertebereich liegen, wird bei der Berechnung der Fehleranteile die Verteilung der Merkmalswerte gestutzt, indem ein Wertebereich durch das Intervall $[W_u; W_o]$ vorgegeben wird.

Bei der Ermittlung der Anzahl an Ausschussaufträgen für einen Prüfvorgang a ist zu beachten, dass ein Prüfvorgang aus mehreren Kommissioniervorgängen bestehen kann. Die Anzahl der Kommissioniervorgänge des Prüfvorgangs a und damit die Anzahl der zum betrachteten Prüfzeitpunkt zu prüfenden Merkmale sei $X(a)$. Ein bestimmter Kommissioniervorgang des Prüfvorgangs a wird mit $x(a)$ gekennzeichnet, wobei $x(a)$ Werte von 1 bis $X(a)$ annehmen können.

In jedem Prüfvorgang wird in der Regel eine bestimmte Anzahl an Aufträgen aufgrund von Ausschuss aussortiert, so dass sich die Stückzahl der fehlerfrei kommissionierten Aufträge von einem Prüfvorgang zum nächsten verringert.
Die Stückzahl $Z_x(a)$, d. h. die Anzahl an Kommissionieraufträgen, die im Prüfvorgang $x(a)$ geprüft werden muss, wird wie folgt berechnet:

\[
Z_x(a) = N_{akt}
\]

fü r $x(a) = 1$

\[
Z_x(a) = Z_{x(a)-1} - Z_{x(a)-1} \cdot \left(1 - P_{a,x(a)-1} \cdot \left(1 - \frac{n_{x(a)-1}}{Z_{x(a)-1}}\right)\right) \cdot p_{Aus,x(a)-1}
\]

für $1 < x(a) \leq X(a)$

mit:

- N_{akt} : aktuelle Stückzahl der Kommissionieraufträge nach dem Arbeitsvorgang a
- $P_{a,x(a)-1}$: mittlere Annahmewahrscheinlichkeit für das Merkmal, welches direkt vor dem Merkmal $x(a)$ geprüft wird
- $n_{x(a)-1}$: Stichprobenumfang für das Merkmal, welches direkt vor dem Merkmal $x(a)$ geprüft wird
- $p_{Aus,x(a)-1}$: entdeckter Ausschussanteil für das Merkmal, welches direkt vor dem Merkmal $x(a)$ geprüft wird

Die Stückzahl $Z_x(a)$ ist für die nachfolgenden Berechnungen auf ganze Zahlen zu runden. Die mittlere Annahmewahrscheinlichkeit $P’a$ eines Auftrags wird auf Basis der Annahmewahrscheinlichkeit Pa ermittelt. Die Annahmewahrscheinlichkeit Pa für ein Merkmal kann exakt mittels der Verteilungsfunktion der hypergeometrischen Verteilung berechnet werden [Bosch98]:

\[
P_a (M \mid N, n, c) = \sum_{i=0}^{c} \binom{M}{i} \cdot \binom{N-M}{n-i} \cdot \binom{n}{i}
\]

für i, M, N, n, c ganzzahlig; $n < N$; $0 \leq i \leq \text{Min} [n; M]$; $0 \leq n - i \leq N - M$

mit

- N : Anzahl an Positionen
- M : Anzahl fehlerhafter Positionen
- n : Stichprobenumfang
- c : Annahmehzahl
Die dargestellte Gleichung zur Berechnung der Annahmewahrscheinlichkeit \(P_{a} \) gilt für eine Prüfung, in der sich genau \(M \) fehlerhafte Positionen befinden. In der Regel variiert die Anzahl fehlerhafter Positionen jedoch von einem Auftrag zum nächsten auf Grund der unterschiedlichen Anzahl von Positionen je Auftrag, so dass zur Berechnung der mittleren Annahmewahrscheinlichkeit \(P'a \) die Verteilung der fehlerhaften Positionen in den Aufträgen zu berücksichtigen ist.

Unter der Annahme, dass die Wahrscheinlichkeit, ein Auftrag fehlerhaft zu kommissionieren, für jedes Merkmal gleich ist, sind die fehlerhaften Positionen in den Aufträgen binomialverteilt. Die Wahrscheinlichkeit, dass sich in einem Auftrag mit der Stückzahl \(Z_{x}(a) \) genau \(M \) fehlerhafte Positionen befinden, ergibt sich aus der Dichtefunktion der Binomialverteilung.

Unter Berücksichtigung der unterschiedlichen Anzahl an Positionen je Auftrag und der Annahmewahrscheinlichkeit \(P_{a} \), d. h. die Wahrscheinlichkeit, dass ein Auftrag mit der Positionenzahl \(Z_{x}(a) \) bei einer Stichprobenprüfung im Mittel angenommen wird, wie folgt berechnet werden [Mayer03], wobei zu berücksichtigen ist, dass dies der schwierigste mathematische Fall ist, der in der Kommissionierung auftritt. Dieser wird im Folgenden detailliert der Vollständigkeit halber behandelt, wobei in der Praxis oft nur die attributive Prüfung vorliegt, welche anschließend behandelt wird.

\[
P'_{a,x(a)} = \sum_{M=0}^{M_{\text{max}}(z_{x}(a))} \left(\frac{Z_{x}(a)}{M} \right) \cdot \left(p_{\text{Nach}_{x}(a)} + p_{\text{Aus}_{x}(a)} \right)^{M} \cdot \left(1 - p_{\text{Nach}_{x}(a)} - p_{\text{Aus}_{x}(a)} \right)^{Z_{x}(a) - M} \cdot \sum_{i=0}^{M_{\text{max}}(z_{x}(a))} \binom{M}{i} \cdot \frac{Z_{x}(a) - M}{n_{x}(a)} \cdot \frac{Z_{x}(a)}{n_{x}(a)}
\]

mit:

- \(n_{x}(a) \) : Stichprobenumfang für das Merkmal \(x(a) \)
- \(c_{x}(a) \) : Annahmezahl für das Merkmal \(x(a) \)
- \(Z_{x}(a) \) : Positionenzahl des Auftrags bei der Prüfung des Merkmals \(x(a) \) (ganzzahlig)
- \(M \) : Anzahl fehlerhafter Positionen im Auftrag
- \(p_{\text{Aus},x(a)} \) : entdeckter Ausschussanteil für das Merkmal \(x(a) \)
- \(p_{\text{Nach},x(a)} \) : entdeckter Nacharbeitsanteil für das Merkmal \(x(a) \)
Nachdem für alle Kommissioniervorgänge eines Prüfvorgangs a die Stückzahl Zx(a) und die mittlere Annahmewahrscheinlichkeit berechnet worden ist, sind nun aus den merkmalsbezogenen Fehleranteilen pAus und pNach die Anzahl an Ausschuss- und Nacharbeitsteilen für jeden Kommissioniervorgang x(a) zu ermitteln. Dabei ist zu berücksichtigen, dass ein Kommissionierauftrag meist mehrere Merkmale aufweist, so dass Abhängigkeiten zwischen einzelnen Merkmalen bestehen können: So wird ein betrachtetes Merkmal nur dann nachgearbeitet, wenn der Auftrag nicht noch vor dem Nacharbeitsvorgang, aufgrund der Fehlerhaftigkeit eines anderen Merkmals, aussortiert wird. Folglich ist die Anzahl der Aufträge, die im Rahmen eines Prüfvorgangs als Ausschuss oder als Nacharbeit klassifiziert werden, nicht identisch mit der Summe der merkmalsbezogenen Fehleranteile pAus und pNach.

Für die sich anschließenden Berechnungen werden die folgenden Annahmen getroffen:

Die Wahrscheinlichkeit für das Auftreten eines Fehlers in Bezug auf ein Merkmal ist unabhängig von der Wahrscheinlichkeit für das Auftreten eines Fehlers in Bezug auf ein anderes Merkmal.

- Ein Merkmal wird erst dann nachgearbeitet, wenn der betrachtete Prüfvorgang vollständig beendet ist, d. h. Nacharbeit erfolgt erst nach dem letzten Teilprüfvorgang.
- Die Nacharbeitsvorgänge weisen die gleichen Fehlerauftretenswahrscheinlichkeiten auf wie die regulären Arbeitsvorgänge.
- Sofern eine Position im Rahmen der Stichprobenprüfung abgelehnt wird, wird der gesamte Auftrag einer Prüfung unterzogen.
- Es wird vereinfachend angenommen, dass der Transport eines Auftrags fixe als auch variable Kosten verursacht. Bei der späteren Simulation wird der Transport als Zeit verbrauchender Vorgang simuliert (variabel) und zudem pro Prüfvorgang ein fixer Betrag für die Kosten der Prüfmittel festgesetzt.

Die Anzahl an Positionen, die in Bezug auf das Merkmal x(a) nach der vollständigen Durchführung des Prüfvorgangs a nachgearbeitet werden müssen, wird mit NAx(a)
bezeichnet. Die Formel zur Berechnung der Anzahl nachzuarbeitender Positionen wird im Folgenden schrittweise hergeleitet:

Unter der Annahme, dass in einem Prüfvorgang a nur ein Merkmal geprüft wird (d. h. $X(a)=1$), ergibt sich die Anzahl der nach dem Prüfvorgang a in Bezug auf das Merkmal 1(a) nachzuarbeitender n Positionen – unter Berücksichtigung des Anteils geprüfter Positionen am Auftrag – nach der folgenden Formel:

\[
NA_{1(a)} = N_{akt} \cdot p_{Nach,1(a)} \cdot \left(1 - P_{a,1(a)}' \cdot \left(1 - \frac{n_{1(a)}}{Z_{1(a)}}\right)\right) \\
\]

mit: $n_{1(a)}$: Stichprobenumfang für das Merkmal 1(a)
N_{akt} : aktuelle Stückzahl der Positionen vor dem betrachteten Prüfvorgang
$Z_{1(a)}$: Stückzahl des Auftrags bei der Prüfung des Merkmals 1(a)
$P_{a,1(a)}'$: mittlere Annahmewahrscheinlichkeit für das Merkmal 1(a)
$p_{Nach,1(a)}$: entdeckter Nacharbeitsanteil für das Merkmal 1(a)

Werden in dem Prüfvorgang a dagegen zwei Merkmale geprüft, sind Abhängigkeiten zwischen den Merkmalen zu berücksichtigen: Das Merkmal 1(a) wird nur dann nachgearbeitet, wenn die entsprechenden Positionen bei der Prüfung des Merkmals 2(a) als korrekt oder als Nacharbeit klassifiziert wird. Wird die Position dagegen bei der Prüfung des Merkmals 2(a) als Ausschuss im Sinne von nicht geeignet für die Nacharbeit aussortiert, findet die Nacharbeit des Merkmals 1(a) nicht statt. Die in Bezug auf das Merkmal 1(a) nachzuarbeitende Anzahl an Positionen $NA_{1(a)}$ ergibt sich daher wie folgt [Mayer03]:

\[
NA_{1(a)} = N_{akt} \cdot p_{Nach,1(a)} \cdot \left(1 - P_{a,1(a)}' \cdot \left(1 - \frac{n_{1(a)}}{Z_{1(a)}}\right)\right) \cdot \left(1 - P_{a,2(a)}' \cdot \left(1 - \frac{n_{2(a)}}{Z_{2(a)}}\right)\right) \\
\]

mit: $n_{x(a)}$: Stichprobenumfang für das Merkmal $x(a)$
N_{akt} : aktuelle Stückzahl der Positionen vor dem betrachteten Prüfvorgang
Die Ermittlung von Zeiten, Kosten, Auftretens- und Entdeckungswahrscheinlichkeiten

\[Z_{x(a)} : \text{Stückzahl des Kommissionierauftrags bei der Prüfung des Merkmals } x(a) \]

\[P'_{a, x(a)} : \text{mittlere Annahmewahrscheinlichkeit für das Merkmal } x(a) \]

\[p_{\text{Aus}, x(a)} : \text{entdeckter Ausschussanteil für das Merkmal } x(a) \]

\[p_{\text{Nach}, x(a)} : \text{entdeckter Nacharbeitsanteil für das Merkmal } x(a) \]

Für das Merkmal 2(a) ergibt sich entsprechend:

\[
N_{\text{Nach}, 2(a)} = N_{akt} \cdot P_{\text{Nach}, 2(a)} \cdot \left(1 - P'_{a, 2(a)} \cdot \frac{n_{2(a)}}{Z_{2(a)}} \right) \cdot \left(1 - P'_{a, 1(a)} \cdot \frac{n_{1(a)}}{Z_{1(a)}} \right)
\]

mit: \[n_{x(a)} : \text{Stichprobenumfang für das Merkmal } x(a) \]

\[N_{akt} : \text{aktuelle Stückzahl der Positionen vor dem betrachteten Prüfvorgang} \]

\[Z_{x(a)} : \text{Stückzahl des Auftrags bei der Prüfung des Merkmals } x(a) \]

\[P'_{a, x(a)} : \text{mittlere Annahmewahrscheinlichkeit für das Merkmal } x(a) \]

\[p_{\text{Aus}, x(a)} : \text{entdeckter Ausschussanteil für das Merkmal } x(a) \]

\[p_{\text{Nach}, x(a)} : \text{entdeckter Nacharbeitsanteil für das Merkmal } x(a) \]

Unter der Annahme, dass in einem Prüfvorgang drei Merkmale geprüft werden, sind die Abhängigkeiten zwischen allen drei Merkmalen zu betrachten, etc.

Aus den voran stehenden Erläuterungen kann die allgemeingültige Formel zur Berechnung der Anzahl, der in Bezug auf das Merkmal x(a) nachzuarbeitenden Positionen, für einen Kommissioniervorgang a, in dem X(a) Merkmale geprüft werden, abgeleitet werden.
Diese lautet wie folgt:

\[
NA_{x(a)} = \frac{N_{akt} \cdot p_{Nach,x(a)} \cdot \left[1 - P'_{a,x(a)} \cdot \left(1 - \frac{n_{x(a)}}{Z_{x(a)}} \right) \right] \cdot x(a) \cdot \prod_{i=1}^{X(a)} \left[1 - P'_{a,i(a)} \cdot \left(1 - \frac{n_{i(a)}}{Z_{i(a)}} \right) \right]}{1 - \left[1 - P'_{a,x(a)} \cdot \left(1 - \frac{n_{x(a)}}{Z_{x(a)}} \right) \right] \cdot p_{Aus,x(a)}}
\]

mit:
- \(n_{x(a)} \): Stichprobenumfang für das Merkmal \(x(a) \)
- \(n_{i(a)} \): Stichprobenumfang für das Merkmal \(i(a) \)
- \(N_{akt} \): aktuelle Stückzahl der Positionen vor dem betrachteten Prüfvorgang
- \(Z_{x(a)} \): Stückzahl des Auftrags bei der Prüfung des Merkmals \(x(a) \)
- \(Z_{i(a)} \): Stückzahl des Auftrags bei der Prüfung des Merkmals \(i(a) \)
- \(P'_{a,x(a)} \): mittlere Annahmewahrscheinlichkeit für das Merkmal \(x(a) \)
- \(P'_{a,i(a)} \): mittlere Annahmewahrscheinlichkeit für das Merkmal \(i(a) \)
- \(p_{Aus,x(a)} \): entdeckter Ausschussanteil für das Merkmal \(x(a) \)
- \(p_{Aus,i(a)} \): entdeckter Ausschussanteil für das Merkmal \(i(a) \)
- \(p_{Nach,x(a)} \): entdeckter Nacharbeitsanteil für das Merkmal \(x(a) \)
- \(X(a) \): Anzahl der Merkmale, welche im Prüfvorgang \(a \) geprüft werden

Ausschuss kann zum einen bei der regulären Prüfung und zum anderen bei der erneuten Prüfung nach einem Nacharbeitsvorgang auftreten. Die Anzahl an Aufträgen, die aufgrund der Fehlerhaftigkeit des Merkmals \(x(a) \) nach der regulären Prüfung aussortiert wird, wird mit \(A_{x(a)}(DL = 1) \) bezeichnet und ergibt sich wie folgt:

\[
A_{x(a)}(DL = 1) = Z_{x(a)} \cdot p_{Aus,x(a)} \cdot \left[1 - P'_{a,x(a)} \cdot \left(1 - \frac{n_{x(a)}}{Z_{x(a)}} \right) \right]
\]

mit:
- \(n_{x(a)} \): Stichprobenumfang für das Merkmal \(x(a) \)
- \(Z_{x(a)} \): Stückzahl der Aufträge bei der Prüfung des Merkmals \(x(a) \)
- \(P'_{a,x(a)} \): mittlere Annahmewahrscheinlichkeit für das Merkmal \(x(a) \)
p_{Aus,x(a)} : entdeckter Ausschussanteil für das Merkmal x(a)

\[
A_{x(a)}(DL = 2) = NA_{x(a)} \cdot p_{Aus,x(a)}
\]

Die Anzahl an Aufträgen, die nach der Nacharbeit eines Merkmals x(a) aufgrund der Fehlerhaftigkeit dieses Merkmals bei der erneuten Prüfung aussortiert wird, wird näherungsweise wie folgt berechnet:

mit: \(NA_{x(a)} \) : Anzahl der Nacharbeitsaufträge in Bezug auf Merkmal x(a)
\(p_{Aus,x(a)} \) : entdeckter Ausschussanteil für das Merkmal x(a)

Nachdem die Anzahl an Ausschuss- und Nacharbeits-Aufträgen für alle Merkmale, die während eines Prüfvorgangs a geprüft werden, ermittelt worden ist, ergibt sich die aktuelle Stückzahl der Aufträge, d. h. die Anzahl an Aufträgen, die zum nächsten Arbeitsvorgang a+1 gelangt, aus der nachstehenden Formel:

\[
N_{akt} = N_{akt} - \sum_{x(a)=1}^{X(a)} (A_{x(a)}(DL = 1) + A_{x(a)}(DL = 2))
\]

Die auf den vorangegangenen Seiten beschriebenen Berechnungen können theoretisch für alle Prüfvorgänge mit kontinuierlichen Merkmalen durchgeführt werden. Nach der Betrachtung des letzten Prüfvorgangs A entspricht die aktuelle Stückzahl der Kommissionieraufträge Nakt der Stückzahl, die im Mittel fertig gestellt, d. h. als fehlerfrei klassifiziert wird.

Die Erzeugung attributiver Merkmale erfolgt lediglich durch die Festlegung eines Fehleranteils p. Die wahren Merkmalswerte attributiver Merkmale umfassen die beiden Möglichkeiten „in Ordnung“ und „nicht in Ordnung“. Sie werden erzeugt,
indem aus einer Gleichverteilung zufällig eine Zahl zwischen „0“ und „1“ erzeugt wird. Ist diese Zahl kleiner als der Fehleranteil \(p \), lautet der wahre Merkmalswert „nicht in Ordnung“, im anderen Fall, die zufällig erzeugte Zahl ist also größer als der Fehleranteil \(p \), lautet der wahre Merkmalswert „in Ordnung“.

Da in der Kommissionierung der Anteil attributiver Prüfung deutlich überwiegt, wird im weiteren Verlauf der Simulation mit Prüfstrategien gearbeitet, die attributive Merkmale beinhalten, was sich ebenfalls in den erstellten Simulationsvarianten (s. Kapitel 8.3) widerspiegelt.

Zwecks Reduzierung von rechnerischem Arbeitsaufwand und Berücksichtigung fallspezifischer Abweichungen ist es daher empfehlenswert, Fehlerentdeckungswahrscheinlichkeiten aus den Datenerhebungen und Feldversuchen, angelehnt an die reelle Situation in der Kommissionierung abzuleiten.
5 Prozessmodell für die Retourenabwicklung

5.1 Begriffsdefinitionen

Im Folgenden werden die Begriffe Retoure und Reklamation definiert und voneinander abgegrenzt, wobei bezüglich der Retoure zwischen interner und externer Retoure differenziert wird.

Eine eindeutige Abgrenzung des Begriffs der Reklamation vom Begriff der Retoure ist in der bestehenden Literatur nicht vorzufinden. Von den Unternehmen im projektbegleitenden Ausschuss wird die Reklamation daher mit dem Kontakt zwischen Kunden und Lieferanten im weiteren Sinne definiert. In diesem
Zusammenhang ist die Abgrenzung zwischen Reklamation und Retoure so zu verstehen, dass eine Reklamation nicht zwangsläufig zu einer physischen Rücklieferung der Ware, also zu einer Retoure führt. Da „Retourenprozesse“ ohne physische Rücklieferung der Ware aber nach Aussage der Beteiligten des projektbegleitenden Ausschusses einen nicht unerheblichen Teil der im Unternehmen anfallenden Prozesse einnehmen, werden auch diese Prozesse im Folgenden ausführlich beschrieben (siehe Kapitel 5.2.6).

5.2 Das Prozessmodell der Retourenabwicklung

In Abbildung 57 ist der anhand der Unternehmensdaten vollständig aufgenommene Prozess der Retourenabwicklung dargestellt. Eine detaillierte Darstellung der im Prozessmodell ablaufenden Prozesse ist nur unter Berücksichtigung der bereits in Kapitel 4.3.1 beschriebenen klassifizierten Fehlerarten möglich. Das Prozessmodell wird in den folgenden Kapiteln anhand verschiedener Blöcke (jeweils farbig hinterlegt), die ähnliche Prozesse enthalten, erläutert. Dabei werden die in Abbildung 57 dargestellten Prozesse in ihre Teilprozesse unterteilt, um so eine detaillierte Beschreibung der erforderlichen Aktivitäten zu ermöglichen.
5.2.1 Vor Rücklieferung der Ware

Gemeinsam ist beiden Teilprozessen, dass sie optional sind, also nicht zwingend ein Bestandteil des Retourenprozesses sind. Detaillierter betrachtet können entweder beide oder auch nur einer der beiden Teilprozesse stattfinden, wobei das Vorbereiten der Retoure zeitlich stets vor dem Analysieren und Auslösen der Retoure liegt.
Vorbereiten der Retoure vor Auslieferung

Gründe analysieren und Auslösen der Retoure bei Meldung des Kunden

Eine Bestätigung des zuvor erläuterten Sachverhaltes besteht auf Basis der von den Unternehmen des projektbegleitenden Ausschuss berichteten Erfahrungen, dass es speziell bei Typfehlern nicht zwangsläufig zu einer Retoure kommt.

Eine detaillierte Darstellung der Vorgänge, die in einem Unternehmen ablaufen, falls es nicht zu einer Rücklieferung der Ware kommt, wird in Kapitel 5.2.6 vorgenommen.

Ist die Retoure durch eine Zentrale nicht zu verhindern, besteht auf diesem Weg trotzdem die Möglichkeit die Abwicklung der Rücklieferung zu optimieren. So kann nicht nur die Art, der Umfang und der Zeitpunkt der Rücklieferung geklärt werden, sondern auch im Wissensmanagementsystem (Warehouse Managementsystem, Warenwirtschaftssystem, Workflow Managementsystem, ...) die Retoure vorbereitet und die Retourenabwicklung schon vor dem Eintreffen der Rücklieferung eingeleitet werden [vgl. Grünz und Mesenhöller 2001a, S. 48f.]. Ein solcher Ansatz wird von der Amazon Logistik GmbH verfolgt, hier wird dem Kunden online der Inhalt seiner Lieferung angezeigt. In dieser Auflistung kann der Kunde dann den zu reklamierenden Artikel auswählen und den Retourengrund angeben [vgl. Dahms 2002, S. 42f.]. Folglich stehen beim Eingang der Ware bereits alle relevanten Daten zur Verfügung, so dass die mit dem Eingang der Ware verbundenen Prozesse, wie Kunde und Ware identifizieren (Kapitel 5.2.3), Überprüfen des Retourengrundes...
(Kapitel 5.2.4) oder auch die Weiterverwendung der Ware (Kapitel 5.2.5), erheblich vereinfacht werden können.

Vom projektbegleitenden Ausschuss wird bezüglich des zuvor beschriebenen Vorgehens angemerkt, dass die vom Kunden angegebenen Fehlerbeschreibungen häufig zu Missverständnissen im Unternehmen führen, welche dementsprechend Fehlentscheidungen seitens des Unternehmens verursachen. Um die Auftrittswahrscheinlichkeit von kostenintensiven Fehlentscheidungen so gering wie möglich zu halten, ist der Einsatz von geschultem Personal unabdingbar.

5.2.2 Rücklieferung der Ware

Unter dem Prozessschritt „Rücklieferung der Ware“ werden alle durch eine Retoure ausgelösten physischen Rücklieferungen verstanden, die nicht durch eine direkte Reklamation der Ware bei der Auslieferung anfallen. Jene Logistikprozesse werden in Kapitel 5.2.3 im Unterkapitel der „Reklamation bei Auslieferung“ detailliert beschrieben.

Abbildung 59: Rücklieferung der Ware

Für den Fall, dass eine physische Rücklieferung der Ware durchzuführen ist, sofern keine Reklamation bei Auslieferung vorliegt, sind zwei Alternativen zu betrachten. Zum einen besteht die Möglichkeit, dass die Ware durch einen gesonderten Transport zum Unternehmen zurückgeliefert wird. Zum anderen kann die Ware im Zuge eines neuen Lieferauftrags zum Unternehmen zurückgeführt werden. Diese Differenzierung ist aufgrund der unterschiedlich hohen Kosten der zwei Alternativen unabdingbar. Fallen hinsichtlich der ersten Alternative Mehrkosten durch den zusätzlichen Logistikaufwand in Form des Rücktransports an, so können diese Mehrkosten bei Betrachtung der zweiten Alternative durch die Verbindung des Rücktransports der reklamierten Ware mit der Auslieferung neuer Ware vermieden.
werden. Der Rücktransport an sich kann durch interne Mitarbeiter oder Logistikpartner des ausliefernden Unternehmens sowie durch sonstige Logistikdienstleister geschehen.

5.2.3 Bearbeitung der Rücklieferung

Abbildung 60: Rücklieferung der Ware

Die Bearbeitung der Rücklieferung kann abhängig von der Art der Rücklieferung drei verschiedene Formen annehmen. Der erste Fall wird mit der Reklamation bei Auslieferung beschrieben. Das heißt, der Kunde nimmt die angelieferte Ware nicht an und schickt die komplett, ungeöffnete Lieferung zurück. Im zweiten, klassischen Fall wird die gesamte Lieferung oder zumindest die fehlerhafte Ware komplett zurück gesendet, wobei die gelieferte Ware zunächst im belieferten Unternehmen angenommen wird und bis zum Entdecken des vorliegenden Fehlers weitere Prozessschritte durchläuft. Der dritte Fall tritt ein, wenn bei einem Mengenfehler nur die überflüssigen Artikel zurück geliefert werden.

Die Rücklieferung der Ware muss dabei nicht unbedingt an das Lager geschehen, welches die Ware ausgeliefert hat. Regionallager sind häufig nicht in dem Maße auf

Reklamation bei Auslieferung

Im Fall der „Reklamation bei Auslieferung“ wird der Retourenprozess insofern vereinfacht, dass die Ware vor der Übergabe direkt wieder in den Materialfluss des Lagers des liefernden Unternehmens geführt wird. Es wird davon ausgegangen, dass die Rücklieferung durch das Unternehmen selbst oder den Logistikpartner geschieht, der mit der Auslieferung der Ware beauftragt ist. Es sind also keine gesonderten Logistikprozesse zu initiieren, wodurch der Prozessschritt „Rücklieferung der Ware“ in diesem Fall als einziger Teilprozessschritt existiert. Außerdem ist durch die Ablehnung der Annahme sichergestellt, dass die Lieferung sich noch im Originalzustand befindet. Ein solches Vorgehen wird besonders von den am projektbegleitenden Ausschuss beteiligten Unternehmen aus der Lebensmittelbranche als üblich bezeichnet. Auch für interne Retouren (siehe Kapitel 5.1) ist diese Art der Einleitung einer Retoure durchaus üblich. Die Bestandteile des zuvor erläuterten Prozessschrittes „Reklamation bei Auslieferung“ nach dem Eintreffen der Retoure sind laut Olaf Koch [2002], das Auspacken und Vereinzeln, Kunden und Waren identifizieren sowie das Analysieren der Rücksendegründe (siehe Abbildung 61). Die einzelnen Schritte werden im Weiteren näher erläutert.

[Abbildung 61 Teilprozesse der Reklamation bei Auslieferung]
Die Rücklieferung direkt nach Auslieferung der Ware, also zeitlich vor der Annahme der Ware im belieferten Unternehmen, birgt eine Reihe von Vor- und Nachteilen. Die Vorteile sind wie bereits genannt zum einen die Sicherheit, dass die Ware durch den Kunden nicht verändert wurde, wodurch der Prozessschritt „Überprüfung der Retourengründe“ stark vereinfacht werden kann. Zum anderen ist eine Beauftragung gesonderter Logistikdienste nicht erforderlich. Zwar ist die Rücklieferung der Ware ein ungeplanter Logistikprozess, der sofortige Rücktransport durch den Logistikpartner vor Ort vereinfacht diesen Prozess aber erheblich. Die Tatsache, dass der Rücktransport ungeplant durch den ausliefernden Logistikpartner durchgeführt wird, kann aber zum Nachteil werden, wenn durch den sofortigen Rücktransport Mehrkosten entstehen. Durch den projektbegleitenden Ausschuss wird angemerkt, dass die sofortige Rücklieferung speziell in der Lebensmittelindustrie einen üblichen Ablauf darstellt. Sollte die Auslieferung durch einen internen Mitarbeiter geschehen, stellt die sofortige Rücklieferung der Ware im Allgemeinen kein Problem dar, da der interne Logistikpartner in diesem Fall umgehend zum Lager zurückkehrt. Wird die Auslieferung jedoch durch einen externen Logistikpartner umgesetzt, kann die sofortige und ungeplante Rücklieferung durchaus zu Problemen führen.

Der darauf folgende Teilprozess der WARENannahme stellt den ersten wichtigen Schritt im Materialfluss eines Lagers dar [vgl. Ten Hompel 2003]. Die Annahme der rückgelieferten Ware ist stark vereinfacht, da sich die Lieferung noch im Auslieferzustand befindet und somit Verpackungseinheit des Lagers entspricht. Auch die Tatsache, dass die Ware durch den gleichen Logistikpartner zurückgeliefert wird, von dem sie ursprünglich ausgeliefert wurde, vereinfacht den Prozess der WARENannahme weiter. Der Teilprozess der WARENannahme ist mit dem Einbringen der Ware in den Materialfluss des Lagers, also mit der physischen Ankunft der Ware, beendet.

Durch die besonderen Anforderungen der Retoure ist der Prozessschritt des Auspackens und Vereinzeln der Ware besonders zu betrachten. Das als „Cross Docking“ bekannt gewordene Abstimmen der Warenein- und abgänge [vgl. Ten Hompel 2003], also das Aufteilen der Eingänge nach Bestellmengen, ist in diesem Zusammenhang uninteressant. Viel interessanter in diesem Zusammenhang ist die
Tatsache, dass bei einer Retoure dieser Art häufig die gesamte Lieferung, bestehend aus verschiedenen Artikeln, zurückgeliefert wird. Somit wird im Teilprozess „Ware auspacken und vereinzeln“ die Rücklieferung in einem ersten Schritt in ihre Bestandteile aufgeteilt.

Eine sorgfältige Erfassung der Daten kann aber auch zu Data-Mining Zwecken sinnvoll sein. So kann auf Basis der erfassten Retourendaten eine Kundenbewertung vorgenommen werden. So berichtet Mues [2003] dass über die Auswertung der Retourendaten erkannt werden konnte, dass 1 % der Kunden für 10 % der Retourenkosten verantwortlich waren.

In folgenden Teilprozess werden die beanstandeten Artikel erstmals auf die angegebene Fehlerhaftigkeit untersucht. Zu beachten ist, von welchem Kunden die Reklamation ausgeht. Ist der retournierende Kunde nicht mit dem erforderlichen Fachwissen ausgestattet, so können die angegebenen Retourengründe selten direkt umgesetzt werden. Es besteht sogar die Gefahr, dass die ungeprüfte Verfolgung der angegebenen Gründe zu Missverständnissen und Fehlern im Retourenprozess führt. Ein vorliegender Auslassungs-, Mengen oder Typfehler kann hier anhand der Daten aus der Vereinzelung bestätigt werden. Bei einem Zustandsfehler bedeutet dies, dass der Mangel an der Ware überprüft wird. In diesem Schritt kann laut Koch [2002] die Technik nur sehr selten den Mitarbeiter ersetzen, der den Zustand der Ware
5 Prozessmodell für die Retourenabwicklung

beurteilt. Der Mitarbeiter kann aber durch feste Vorgaben und Kriterien (abhängig von den Warengruppen), speziell im Fall einer großen Vielfalt, bei seiner Arbeit unterstützt werden.

Bearbeitung der Rücklieferung

Im zweiten Fall, also im Prozess „Rücklieferung der Ware“, sind die Teilprozesse zum größten Teil identisch mit den Teilprozessen aus dem Prozess „Reklamation bei Auslieferung“ (siehe Abbildung 62).

Lediglich der Teilprozess „Rücklieferung der Ware durch ausliefernden Logistikpartner“ entfällt, da die in diesem Teilprozess inbegriffenen Aktivitäten bereits in einem eigenen vorgelagerten Prozess abgewickelt werden (siehe Kapitel 5.2.2). Der Teilprozess „Annahme der Ware“ kann in diesem Fall aber stark vom gleichnamigen Teilprozess des Prozesses „Reklamation bei Auslieferung“ abweichen, da die Abgabe der Ware von verschiedenen Gruppen geschehen kann. Im günstigsten Fall wird die Ware durch den Logistikpartner des Unternehmens angeliefert. Des Weiteren ist eine Anlieferung der reklamierten Ware durch sonstige Logistikdienstleister üblich. Es besteht zudem die Möglichkeit, dass der Kunde die reklamierte Ware selbständig am Lager abliefer. In diesem Zusammenhang problematisch ist der Zustand der zurückgelieferten Ware. Speziell unter der Annahme, dass die Ware vom Kunden geöffnet und eventuell sogar verwendet wurde, ist der Zustand der reklamierten Ware (z. B. Verpackung,
Verpackungseinheit) sicherlich nicht mehr mit dem Zustand der Ware bei Auslieferung identisch. Dies kann bei standardisierten Abläufen zu größeren Problemen führen als bei der Annahme der Ware nach Reklamation bei Auslieferung.

Bearbeitung der zu viel gelieferten Ware

Der dritte Fall, also der Prozess „Rücklieferung zu viel geliefelter Ware“ entsteht durch Mengenfehler in der Kommissionierung. Dieser Prozess findet hauptsächlich beim Vorkommissionieren in der Materialbereitstellung statt. Die Teilprozesse „Annahme der Ware“, „Ware auspacken“ sowie „Kunde und Ware identifizieren“ (siehe Abbildung 63) sind bereits zuvor erläutert worden.

![Abbildung 63: Teilprozesse der Rücklieferung zu viel geliefelter Ware](image)

5.2.4 Überprüfung der Retoure

In diesem Kapitel werden alle Prozesse erläutert, die sich mit der Nachbearbeitung einer physischen Retoure beschäftigen. Hierunter fallen die optionale Überprüfung, ob die Retoure zulässig ist (Fristenprüfung, Fehlerprüfung etc.), die erneute Kommissionierung der reklamierten Ware und eine anschließende Rechnungskorrektur beim Kunden (siehe Abbildung 64).

![Abbildung 64: Überprüfung der Retoure](image)
Dabei stellen die erneute Kommissionierung und die Rechnungskorrektur sich gegenseitig ausschließende Alternativen dar.

Überprüfen der Retourengründe

Abbildung 65: Teilprozesse bei der Überprüfung der Retourengründe

Erneute Kommissionierung

Der zweite Prozess bei der Überprüfung der Retouren ist die „erneute Kommissionierung“ (siehe Abbildung 64). Dieser Prozessschritt wird ausgeführt, wenn der Kunde eine erneute Lieferung der reklamierten Ware verlangt. Dies bedeutet nicht, dass dieselbe Ware wieder versendet wird. Im Gegenteil, allgemein wird die reklamierte Ware zuerst einer aufwendigen Qualitätskontrolle und Aufbereitung unterzogen (siehe Kapitel 5.2.5) bevor sie erneut zur Auslieferung bereitgestellt wird. Aus diesem Grund wird ein völlig neuer Kommissionierauftrag erteilt. Dieser Prozess soll hier nicht weiter in seine Bestandteile zerlegt werden, da dieser schon mehrfach in der bekannten Literatur sowie in den Grundlagen (vgl. Kapitel 1) dargelegt wurde.
Rechnungskorrektur beim Kunden

Abbildung 66: Teilprozesse von der Rechnungskorrektur beim Kunden

Abbildung 66: Teilprozesse von der Rechnungskorrektur beim Kunden

5.2.5 Weiterverwendung der zurückgesendeten Ware
Der Prozessschritt „Weiterverwendung der Ware“ umfasst alle Prozesse, welche an der zurückgelieferten Ware durchgeführt werden (siehe Abbildung 67).
Abbildung 67: Weiterverwendung der Ware

Dieser Prozess gliedert sich grob in drei Unterbereiche. Zum Ersten die Entscheidung, wie mit der zurückgelieferten Ware im Weiteren verfahren wird. Als zweiter Unterbereich jene Prozesse, die sich mit der Aufbereitung und Wiedereinlagerung der Ware befassen und als dritter und größter Unterbereich das optionale Instandsetzen und die alternative Verwendung der Ware. Dargestellt sind die Teilprozesse der Weiterverwendung der Ware in Abbildung 68.

Abbildung 68: Teilprozesse des Prozesses Weiterverwendung der Ware
Entscheidung über die Weiterverwendung

Aufbereitung und Wiedereinlagerung

Die zweite Untergruppe des Prozesses „Weiterverwendung der Ware“ enthält die Teilprozesse zur Aufbereitung und erneuten Einlagerung der Ware. In diesen Teilprozessen werden alle Schritte abgewickelt, die mit der Neueinlagerung zusammenhängen. Dazu gehört das optionale Aufbereiten der Ware mit den Teilprozessschritten „Reinigung der Ware“ und „Neuverpacken der Ware“. Zu dieser Untergruppe zählen außerdem die Prozesse, die sich direkt mit der Wiedereingliederung der Ware in den Prozess beschäftigen, d. h. die Prozesse „Einlagerung der Ware“ und „Warenbestand erhöhen“. Nach diesem Prozessschritt ist die Retourenabwicklung für diese Alternative beendet.

Die Prozessschritte rund um das Aufbereiten der Ware sind erforderlich, wenn die Ware durch den Kunden entgegengenommen und geöffnet wurde oder eventuell aufgetretene Transportschäden zu beseitigen sind. Beim Teilprozessschritt „Reinigung der Ware“ geht es darum, die Ware, die sich bereits in einem ordnungsgemäßen Zustand befindet, durch kurzes Reinigen wieder zur erneuten
Auslieferung vorzubereiten. Es ist nicht Teil dieses Teilprozessschrittes einen Artikel vollständig aufzubereiten. Es soll lediglich die Verschmutzung des Artikels, die seit der Öffnung der Verpackung aufgetreten ist, entfernt werden. Sollte der Artikel stark verschmutzt sein, z. B. durch die kurze Verwendung oder längere Lagerung beim Kunden, reicht eine einfache Reinigung der Ware nicht aus, so dass eine Instandsetzung der geeignete Schritt ist. Das Neuverpacken der Ware ist häufig erforderlich, da der Kunde bei der Feststellung des Kommissionierfehlers die Ware bereits auspackt hat. Auch bei der Qualitätsprüfung nach Eingang der Retoure wird die Ware häufig geöffnet.

Der letzte Teilprozessschritt für diese Untergruppe betrifft die Verbuchung der neu eingelagerten Ware. Dieser Schritt wird in Abbildung 68 mit „Warenbestand erhöhen“ bezeichnet. Die Verbuchung erfolgt in modernen Systemen automatisch zusammen mit dem Einlagern der Ware. Dies geschieht im Allgemeinen durch das Einscannen der Ware bei der Einlagerung. Erfasst wird die Bestandserhöhung im Warenwirtschaftssystem (WWS).

Alternative Verwendung / Instandsetzung

Die dritte Untergruppe enthält alle wesentlichen Prozessschritte zur alternativen Verwendung reklamierter Ware. Bei einer alternativen Verwendung der Ware wird diese nicht in den gewöhnlichen Geschäftsprozess eingegliedert. Gründe können eine Beschädigung, eine unzumutbare Abnutzung oder ein Überschreiten des
5 Prozessmodell für die Retourenabwicklung

Haltbarkeitsdatums der Ware sein. Bei der alternativen Verwendung geht es also darum, den nicht mehr verkaufsfähigen Artikel einer möglichst gewinnbringenden Verwendung zuzuführen. Sollte dies nicht möglich sein, muss der Artikel umwelt- und fachgerecht entsorgt werden. Grundsätzlich kann es auch durch die Firmenpolitik eines Unternehmens geregelt sein, dass reklamierte Waren nicht mehr in den regulären Warenstrom einfließen.

Die Untergruppe besteht aus dem optionalen Instandsetzen der Ware, aus dem Prüfen der alternativen Verwendungsform, der alternativen Verwendung und dem Abschreiben der Ware. Diese Schritte werden im Folgenden näher erläutert.

Das optionale „Instandsetzen der defekten Ware“ findet zu Beginn des Prozesses statt, sofern die Ware durch den Kunden stark abgenutzt oder verschmutzt wurde oder bei Retouren, die auf einen Zustandsfehler zurückzuführen sind, der als reparabel gilt. Vor einer kostenintensiven Reparatur eines Artikels ist abzuschätzen, ob sich der einzusetzende Aufwand bezüglich des daraus resultierenden Nutzens rechnet. Denn im Allgemeinen sind instandgesetzte Artikel aus Garantiegründen nicht mehr in den regulären Verkauf zurückzuführen.

Die häufigste Vorgehensweise bei Handelsunternehmen, die keine eigenen Waren herstellen, ist die Rücksendung der Ware an den Lieferanten. Eine verbreitete Methode bei Herstellern von Waren für den Privatsektor ist der Fabrikverkauf. Hier werden unter Ausschluss der Garantie die defekten, instandgesetzten oder auch intakten, aber nicht mehr verkäuflichen Waren direkt an die Abnehmer verkauft. Eine dem Fabrikverkauf sehr ähnliche Form ist die Abgabe der unverkäuflichen Waren an einen Großkunden. Der Vorteil dieses Vorgehens ist, dass der Hersteller sich nicht mit den einzelnen Kunden beschäftigen muss, sondern die Ware lediglich sammelt,
bis eine ausreichende Anzahl an Artikeln für eine Lieferung an einen Großkunden vorhanden ist. Eine weitere Form der alternativen Verwendung ist die Ersatzteilwertschöpfung, worunter das Zerlegen der Ware in seine Bestandteile verstanden wird, um so besonders wertvolle Komponenten für den Ersatzteilmarkt zu gewinnen. Oftmals werden die gewonnenen Komponenten intern für Reparaturaufträge verwendet. Dieses Vorgehen ist nur dann sinnvoll, wenn es wertvolle Ersatzteile aus der Ware zu gewinnen gibt. Nach der Ersatzteilwertschöpfung sind die verbleibenden Komponenten dann erneut nach der geeigneten Verwendungsform zu prüfen. Zumeist werden die restlichen Komponenten entsorgt. Ist eine derartige alternative Verwendungsmöglichkeit der Ware nicht gegeben, so ist die reklamierte Ware umwelt- und fachgerecht zu entsorgen. Die Entsorgung der Ware bedeutet im Allgemeinen den größten finanziellen Verlust für den Händler bzw. Hersteller. Zwar kann durch den Schrottwert der Ware zum Teil noch ein gewisser Preis erzielt werden, aber dieser liegt weit unter dem Verkaufswert. Besitzt die Ware keinen Schrottwert, muss sie umweltgerecht entsorgt werden. Hierbei geht nicht nur der gesamte Warenwert verloren, es muss u. U. zusätzlich die Entsorgung finanziert werden.

Der Prozessschritt „Abschreibung der Ware“ beschäftigt sich mit der internen Verbuchung der alternativ verwendeten Ware. Die retournierte Ware wird dem Kunden in vollem Maße erstattet. Ist diese allerdings nicht mehr verkäuflich, entsteht zwangsläufig eine Differenz, die vom Händler abgeschrieben werden muss. Dieser Prozessschritt ist also ein buchungstechnischer Vorgang. Wie genau die verschiedenen Lagerverwaltungssysteme ineinander greifen ist z. B. von ten Hompel und Schmidt [2003] ausführlich erläutert.

5.2.6 Reklamation ohne Rücklieferung der Ware (Retoure ohne physische Rücklieferung)

Eine besondere Form der Retoure ist die Retoure ohne Rücklieferung. In diesem Fall finden Lieferant und Kunde eine Vereinbarung, den aufgetretenen Kommissionierfehler zu begleichen, ohne dass eine Rücklieferung der bereits gesendeten Ware erforderlich ist. Grundvoraussetzung für eine Retoure ohne Rücklieferung ist ein bestehender Kommunikationsweg zwischen Lieferant und Kunde. Um den Kontakt ohne Probleme und ohne einhergehende Retoure
herzustellen, sind die in Kapitel 5.2.1 erläuterten Vorbereitungen der Ware vor der Auslieferung von besonderer Bedeutung. Der Übersichtlichkeit wegen orientiert sich die Beschreibung in diesem Kapitel nicht wie bisher an den Prozessschritten, sondern an den möglichen Kommissionierfehlern. Das heißt, es werden die vier möglichen Kommissionierfehler (Auslassungs-, Mengen-, Typ- und Zustandsfehler) der Reihe nach dargestellt und die zur Reklamationsabwicklung erforderlichen Prozessschritte genannt, bevor anschließend die jeweiligen Prozessunterschritte erläutert werden. Die Prozessschritte für dieses Kapitel sind in Abbildung 69 skizziert.

Abbildung 69: Retoure ohne Rücklieferung

Alle Kommissionierfehler, die in diesem Kapitel erläutert werden, können natürlich auch mit einer Rücklieferung der gesamten Lieferung oder der Ware (ausgenommen Auslassungsfehler) behandelt werden. Die Prozessschritte für dieses Vorgehen sind bereits in den vorhergehenden Kapiteln behandelt worden und werden deshalb hier nicht erneut angesprochen.

Reklamation im Falle eines Auslassungsfehlers

Tritt bei der Kommissionierung der Ware ein Auslassungsfehler auf, so ist in diesem Fall nicht zwangsläufig eine Rücklieferung der gesamten Ware erforderlich. Die einfachste Lösung ist stattdessen der Prozessschritt „erneute Kommissionierung“, bei dem die ausgelassene Ware nachgesandt wird. Kombiniert werden kann die erneute Kommissionierung der ausgelassenen Ware mit dem Prozessschritt „Rechnungskorrektur beim Kunden“, d. h. einem Nachlass aufgrund des
aufgetretenen Fehlers. Die zweite Möglichkeit auf einen Auslassungsfehler zu reagieren besteht darin, nur auf den Prozessschritt „Rechnungskorrektur beim Kunden“ zurückzugreifen. Diese Möglichkeit wird in Betracht gezogen werden, wenn der Kunde keine Nachlieferung der ausgelassenen Ware wünscht. In diesem Fall wird dem Kunden sein Geld erstattet bzw. die Rechnungssumme für die ausgelassene Ware gestrichen.
Reklamation im Falle eines Mengenfehlers
Bei einem Mengenfehler, bei dem den Kunden zu wenig Artikel geliefert werden, greifen die gleichen Prozessschritte wie bei einem Auslassungsfehler. Entweder werden dem Kunden die fehlenden Artikel nachgesandt oder die Rechnung um den entsprechenden Betrag korrigiert. Natürlich sind in diesem Fall, wie bereits zuvor beim Auslassungsfehler erwähnt, Kombinationen aus beiden Lösungen denkbar.

Die Rücklieferung der zu viel gelieferten Artikel wurde bereits in Kapitel 5.2.2, mit dem Prozessschritt „Rücklieferung zu viel geliefelter Ware“ behandelt.

Reklamation im Falle eines Typfehlers
Bei einem Typfehler wird dem Kunden falsche Ware geliefert. Es existieren auch in diesem Fall mehrere Varianten, diesen Fehler ohne eine physische Rücklieferung zu bearbeiten. Die erste und einfachste Möglichkeit ist, dass der Kunde die falsche Ware anstatt der eigentlich bestellten behält. In diesen Fall ist eventuell eine Rechnungskorrektur erforderlich, um u. U. vorhandene Preisunterschiede auszugleichen oder dem Kunden einen Nachlass für das Akzeptieren der falschen Ware zu gewähren. Dies wird durch den Prozessschritt „Rechnungskorrektur beim Kunden“ realisiert.

Die zweite Möglichkeit besteht darin, dass der Kunde die falsche Ware zu einem verminderten Preis behält und zusätzlich die richtige Ware nachgesandt bekommt.
Die hierfür erforderlichen Prozessschritte sind zum einen die „Rechnungskorrektur beim Kunden“ und zum anderen die „Erneute Kommissionierung“.

Reklamation im Falle eines Zustandsfehlers

Bei einem Zustandsfehler der Ware - die Ware hat den Kunden defekt erreicht, soll jedoch nicht retourniert werden - bestehen die gleichen Möglichkeiten wie im Falle eines Typfehlers. Entweder der Kunde behält die defekte Ware, wobei ein Preisnachlass gewährt wird oder der Kunde behält die defekte Ware kostenlos und ihm wird die gleiche Ware noch einmal fehlerfrei und ohne entstehende Transportkosten nachgesandt.

Die Prozessschritte „Rechnungskorrektur beim Kunden“ und „erneute Kommissionierung“ sind bereits in Kapitel 5.2.4 dokumentiert. Der Prozessschritt „Abschreibung zu viel gelieferter Ware“ verhält sich äquivalent zum Prozessschritt „Abschreibung der Ware“ in Kapitel 5.2.5, mit dem Unterschied, dass in diesem Fall nicht die Differenz zwischen alternativ erreichtem und tatsächlichem Preis der Ware abgeschrieben werden muss, sondern der volle Preis der zu viel gelieferten Ware.
6 Ermittlung von Kostentreibern und Kosten sowie Ableitung von Kennzahlen

6.1 Einsatz der Prozesskostenrechnung zur Erhöhung der Kostentransparenz

Fertigung betreffenden Leistungsbereichen wie z.B. der Montage und Teilefertigung in Abbildung 70 dargestellt.

Abbildung 70: Direkte und indirekte Unternehmensbereiche (nach Müller, S.18)

Die Vollkostenrechnung verrechnet sämtliche Kosten (Einzel- und Gemeinkosten) auf
die Kostenträger, wobei zunächst in der Kostenartenrechnung die Einzel- und
Gemeinkosten differenziert und die Einzelkosten direkt den Kostenträgern in der
Kostenträgerrechnung zugerechnet werden. Die Gemeinkosten hingegen werden in
der Kostenstellenrechnung den sie auslösenden Kostenstellen belastet und über
Zuschlagssätze anteilig auf die Kostenträger umgelegt. Die Hauptkritikpunkte am
System der Vollkostenrechnung sind insbesondere die mehrstufige Zuschlagsbildung
und die mangelnde Kostenaufgliederung (keine Differenzierung in fixe und variable
Kostenanteile) [vgl. Gabler Wirtschaftslexikon 2000, S. 3373f.]. Dies kann u. U. zu
Zuschlagssätzen von weit über 200 % führen. Der Ansatz der Teilkostenrechnung
basiert im Gegensatz zur Vollkostenrechnung auf der Betrachtung von einem
Kostenträger direkt zurechenbaren Kosten wie variablen, Einzel- oder
Prozesskosten. Durch den fehlenden Einbezug von Gemeinkosten sind
Teilkostenrechnungssystemen für die gestellten Anforderungen nicht geeignet. Die
Prozesskostenrechnung ist kein neues Kostenrechnungssystem, sondern setzt bei
den auf die Gemeinkosten bezogenen Praxismängeln bereits bestehender
Kostenrechnungssysteme an [vgl. Gabler Wirtschaftslexikon 2000, S. 2538ff].
Abbildung 71 verdeutlicht den traditionellen gegenüber dem prozessorientierten
Wertefluss.

Die Hauptkritikpunkte an den bestehenden traditionellen Kostenrechnungssystemen sind laut Gabler die Lohnzuschlagskalkulation der Vollkostenrechnung, welche wegen der Wahl der Fertigungslöhne als Zuschlagsbasis für die Gemeinkosten kritisch zu beurteilen ist, sowie der mangelnde Bezug auf die der Fertigung vor- bzw. nachgelagerten Leistungsbereiche.

6.2 Vorgehensweise bei der Kostenermittlung

Im Folgenden wird die Vorgehensweise bei der Prozesskostenrechnung anhand eines Zehn-Stufen-Modells erläutert [vgl. hier und im Folgenden VDI 4405 2003, Blatt 1, S. 10ff.]. Dabei wird eine Verteilung der in der Kostenstelle anfallenden Kosten über die Bearbeitungszeit des jeweiligen Teilprozesses vorgenommen und nicht eine direkte sachliche Zuteilung der Kosten zu den einzelnen Teilprozessen, welche ebenfalls möglich ist. Dieses Vorgehen begründet sich in der Tatsache, dass die in den indirekten Bereichen anfallenden Personalkosten den größten Teil des Gemeinkostenblocks darstellen und somit eine Verrechnung über die Zeit nahe liegt.

Einschränkend ist hierbei anzumerken, dass Teilprozesse nur zu Hauptprozessen verdichtet werden können, sofern ihre Bezugsgrößen (Kostentreiber) identisch sind oder zumindest stark korrelieren, um somit eine Berechnung der Hauptprozesskostensätze zu ermöglichen [vgl. Heinz u. a. 1997, S. 53].

Nach der Durchführung der Aktivitäten- und Prozessanalyse folgt die erste Stufe des in Abbildung 73 dargestellten Zehn-Stufen-Modells, welche sich mit der Ermittlung der jeweilig betroffenen Kostenstellen und Kostenarten befasst.

Vorgehensweise in der Prozesskostenrechnung

<table>
<thead>
<tr>
<th>Stufe</th>
<th>Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ermittlung der betroffenen Kostenstellen und Kostenarten</td>
</tr>
<tr>
<td>2</td>
<td>Beschaffen der Kosteninformationen</td>
</tr>
<tr>
<td>3</td>
<td>Zuordnung der Teilprozesse, Festlegen der jeweiligen Maßgrößen und Bestimmen der Jahresmengen je Teilprozess</td>
</tr>
<tr>
<td>4</td>
<td>Ermitteln der Teilprozess-Einzelzeiten</td>
</tr>
<tr>
<td>5</td>
<td>Ermittlung der Teilprozess-Gesamtzeit und der durch leistungsmengeninduzierte Prozesse verursachten Gesamtkosten</td>
</tr>
<tr>
<td>6</td>
<td>Prozesskostenberechnung</td>
</tr>
<tr>
<td>7</td>
<td>Bestimmung der Prozesskostensätze</td>
</tr>
<tr>
<td>8</td>
<td>Bildung von Hauptprozessen</td>
</tr>
<tr>
<td>9</td>
<td>Ermittlung von Hauptprozess-Kostensätzen</td>
</tr>
<tr>
<td>10</td>
<td>Kontrollrechnung</td>
</tr>
</tbody>
</table>

Abbildung 73: Zehn-Stufen-Modell zur Darstellung der Vorgehensweise in der Prozesskostenrechnung (in Anlehnung an VDI 4405 2003 Blatt 1, S. 10)

Bezüglich der Kostenstellen kann eine im Unternehmen bereits bestehende Kostenstellenstruktur übernommen werden; besteht eine solche Struktur nicht, so ist die Bildung einer Kostenstellenstruktur in Anlehnung an die zuvor im Rahmen der Prozesshierarchie definierte Prozessstruktur sinnvoll, um so eine vereinfachte Zuordnung der Teilprozesse zu den gebildeten Kostenstellen vornehmen zu können (vgl. Stufe 3). Die Einteilung der in Verbindung mit der Prozesskostenrechnung zu behandelnden Gemeinkosten erfolgt bezüglich der nachstehend aufgeführten Kostenarten [vgl. Wöhe 2000, S. 1107]:

- Personalkosten (z. B. Löhne, Gehälter, Provisionen, soziale Abgaben)
- Sachkosten (z. B. Roh-, Hilfs- und Betriebsstoffe, Abschreibungen auf Gebäude, Maschinen, Werkzeuge und Geschäftseinrichtungen)
- Kapitalkosten (z. B. kalkulatorische Zinsen)
Ermittlung von Kostentreibern und Kosten sowie Ableitung von Kennzahlen

- Kosten für Dienstleistung Dritter (z. B. Transportkosten; Rechts- und Beratungskosten; Kosten für Strom, Gas, Wasser, Telefon; Versicherungskosten)
- Kosten für Steuern, Gebühren und Beiträge

Im zweiten Schritt erfolgt die Beschaffung der zur Berechnung der Prozesskosten erforderlichen Kosteninformationen, wobei zumeist der Betriebsabrechnungsbogen (BAB) als Informationsquelle bzw. -grundlage herangezogen wird. In diesem Zusammenhang werden sowohl die Gesamtkosten je Kostenstelle erfasst als auch Informationen über die Abhängigkeit der Prozesse vom Arbeitsvolumen gesammelt.

Leistungsmengeninduzierte Teilprozesse sind bezüglich des zu erbringenden Arbeitsvolumens mengenabhängig, wohingegen leistungsmengenneutrale Teilprozesse Gemeinkosten darstellen, die nicht mit Hilfe von Kostentreibern verrechenbar sind und dementsprechend unabhängig vom Arbeitsvolumen anfallen.
6 Ermittlung von Kostentreibern und Kosten sowie Ableitung von Kennzahlen

<table>
<thead>
<tr>
<th>Teilprozesse je Kostenstelle</th>
<th>Kostentreiber (Maßgröße)</th>
<th>Menge/Jahr ME/a</th>
<th>Prozesskosten/a in Euro</th>
<th>Prozesskostensatz in Euro/ME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imi-Prozesse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe der Imi-Prozesse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imn-Prozesse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 74: Berechnungstableau in der Prozesskostenrechnung (in Anlehnung an VDI 4405 Blatt 2 2003, S. 8)

Anhand von ebenfalls je Teilprozess zu definierenden Kostentreibern erfolgt daher die Einteilung der Teilprozesse in leistungsmengeninduzierte bzw. leistungsmengenneutrale Prozesse, abhängig davon, ob dem jeweiligen Teilprozess ein Kostentreiber zugewiesen werden kann oder nicht. Die soeben erwähnten Kostentreiber sind definiert als Faktoren, die die Inanspruchnahme der entsprechenden Leistungen bestimmen, siehe Abbildung 75. Dabei kommt den Kostentreibern eine Doppelfunktion im Sinne der Verrechnung der Gemeinkosten auf die Teilprozesse und der Verrechnung der jeweiligen Teilprozesskosten auf die Kalkulationsobjekte zu.

![Diagramm](attachment://diagram.png)

Eine in diesem Schritt zusätzlich zu ermittelnde Datengröße ist die für jeden einzelnen Teilprozess zugrunde liegende Mengenausprägung je Kostentreiber.
bezogen auf eine Abrechnungsperiode (meist ein Jahr), die im Folgenden als Prozessmenge bezeichnet wird.

<table>
<thead>
<tr>
<th>Teilprozesse je Kostenstelle</th>
<th>Kostentreiber (Maßgröße)</th>
<th>Menge/Jahr ME/a</th>
<th>Prozesskosten/a in Euro</th>
<th>Prozesskostensatz in Euro/ME</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Imi</td>
<td>Lmi</td>
</tr>
<tr>
<td>Imi-Prozesse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe der Imi-Prozesse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imn-Prozesse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 76: Ermittlung der Teilprozess-Einzelzeiten, die je Maßgröße benötigt werden (in Anlehnung an VDI 4405 Blatt 2 2003, S. 8)

\[
\frac{\text{Teilprozess} - \text{Einzelzeit}}{\text{Teilprozess} - \text{Gesamtzeit}} \times \text{i}\text{mi} - \text{Gesamtkosten} = \text{i}\text{mi} - \text{Prozesskosten}/a
\]
Abbildung 78: Berechnung der leistungsmengeninduzierten Prozesskosten (in Anlehnung an VDI 4405 Blatt 2 2003, S. 8)

Analog erfolgt eine Zuweisung der leistungsmengenneutralen Gesamtkosten zu den Teilprozessen (s. u.) unter Berücksichtigung der Tatsache, dass in diesem Fall ebenfalls die Einzelzeiten der leistungsmengeninduzierten Teilprozesse zur Berechnung herangezogen werden, sofern eine Verrechnung dieser Kosten durchgeführt wird (vgl. Abbildung 79).

\[
\text{Teilprozess – Einzelzeit} \times \text{Imn – Gesamtkosten} = \text{Imn – Prozesskosten/a}
\]

\[
\frac{\text{Prozesskosten}}{\text{Prozessmenge}} = \frac{\text{Prozesskostensatz}}{\text{ME Jahr}}
\]

Zur Verdeutlichung der zuvor erläuterten Sachverhalte wird in Kapitel 6.3 eine beispielhafte Prozesskostenberechnung für den Bereich der Kommissionierung durchgeführt.
6.3 Prozesskostenrechnung in der Kommissionierung

Im Folgenden wird das Vorgehen zur Prozesskostenberechnung anhand einer Beispielrechnung für die der Produktion nachgelagerte Kommissionierung näher erläutert. Die zur exemplarischen Anwendung der Prozesskostenberechnung angeführten Zahlenwerte basieren auf einem praxisnahen Fallbeispiel, welches im Folgenden kurz beschrieben wird.

Bei dem betrachteten Kommissioniersystem handelt es sich um eine manuelle Kommissionierung von Kleinteilen aus Fachbodenregalen. Eingesetzte Hilfsmittel sind Kommissionierhandwagen sowie Kommissionierlisten. Zur Kommissionierung werden drei Mitarbeiter eingesetzt. Ein weiterer Mitarbeiter leitet die Abteilung Kommissionierung, wobei dieser gleichermaßen dispositive sowie planerische Tätigkeiten in diesem Bereich übernimmt. Weitere Annahmen sind eine auftragsweise Kommissionierung sowie eine artikelweise Entnahme der Güter (d. h. Entnahmeinheit = 1). Die durchschnittliche Kommissionierleistung des Systems pro Tag bzw. pro Jahr ist wie folgt gegeben:

- 261 Aufträge/Tag (≈ 65.250 Aufträge/Jahr)
- 601 Positionen/Tag (≈ 150.250 Positionen/Jahr)
- 1895 Entnahmeeinheiten/Tag (≈ 473.750 Entnahmeeinheiten/Jahr)

In diesem System beläuft sich ein Durchschnittsauftrag somit auf 2,3 Positionen sowie 7,25 Entnahmeeinheiten je Auftrag. Des Weiteren sind beispielhaft nachstehende Kostenangaben zum Kommissioniersystem gegeben (vgl. Tabelle 33). Diese Daten können aus dem Betriebsabrechnungsbogen extrahiert werden.
Ermittlung von Kostentreibern und Kosten sowie Ableitung von Kennzahlen

<table>
<thead>
<tr>
<th>Kostenstelle Kommissionierung</th>
<th>Menge</th>
<th>Einheit</th>
<th>Kosten/ME</th>
<th>Gesamtkosten/Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personal (Meister) (inkl. aller Lohnnebenkosten)</td>
<td>1</td>
<td>AK (Arbeitskraft)</td>
<td>57.187,50 €</td>
<td>57.187,50 €</td>
</tr>
<tr>
<td>Personal (Mitarbeiter) (inkl. aller Lohnnebenkosten)</td>
<td>3</td>
<td>AK</td>
<td>45.937,50 €</td>
<td>137.812,50 €</td>
</tr>
<tr>
<td>Flächenkosten (inkl. Betriebskosten)</td>
<td>2016</td>
<td>m²</td>
<td>56,80 €</td>
<td>114.500,00 €</td>
</tr>
<tr>
<td>Afa Technik inkl. EDV</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>72.750,00 €</td>
</tr>
<tr>
<td>Summe Gesamtkosten/Jahr</td>
<td></td>
<td></td>
<td></td>
<td>382.250,00 €</td>
</tr>
</tbody>
</table>

Tabelle 33: Kostenangaben zum Kommissioniersystem

Sind die in der Prozess- und Aktivitätenanalyse ermittelten Teilprozesse der Kostenstelle zugeordnet, erfolgt die Wahl der jeweiligen Kostentreiber für die verschiedenen

Für die Auftragsannahme wird im Folgenden die Anzahl der Aufträge als Kostentreiber festgelegt. Die Fortbewegung zur Entnahme wird anhand der Auftragspositionen bemessen, wobei zu beachten ist, dass für die Ermittlung der zur Fortbewegung zur Entnahme je Auftragsposition benötigten Zeit ein vom jeweiligen Kommissioniersystem abhängiger geschätzter Durchschnittswert herangezogen wird. Der Entnahme wird die Entnahmeinheit als Kostentreiber zugeordnet; hierbei ist jedoch zu berücksichtigen, inwieweit mehrere Artikel gebündelt entnommen werden und welche Dimension eine Entnahmeinheit hat. Auf Basis der zugrunde liegenden Daten des Kommissioniersystems ist festgelegt, dass die Anzahl der Entnahmevergängen je Auftrag mit der Artikelstückzahl je Auftrag übereinstimmt, d. h. die Entnahmeinheit beträgt eins und die Artikel werden einzeln entnommen. Der Prozess der Kontrolle und Quittierung kann anhand der je Auftrag vorliegenden Auftragspositionen bemessen werden; im Rahmen des Fallbeispiels findet dieser Teilprozess jedoch nicht statt. Die Fortbewegung zur Abgabe geschieht je Auftrag einmal, es sei denn, es liegt eine zweistufige Kommissionierung vor. Im Rahmen des Beispiels wird jedoch vorausgesetzt, dass keine sogenannte Batchkommissionierung zugrunde liegt [vgl. Kapitel 2.3.2], so dass als Kostentreiber für den Teilprozess Fortbewegung zur Abgabe die Auftragsanzahl betrachtet werden kann. Zu berücksichtigen ist zudem, dass analog zum Vorgehen bei der Fortbewegung zur Entnahme auch hier ein Durchschnittswert für die zur Fortbewegung zur Abgabe benötigte Zeit herangezogen wird. Analog zum Teilprozess der Entnahme erfolgt auch die Abgabe bezogen auf die Entnahmeinheit eins, so dass die einzelnen Abgabevergängen der Artikelanzahl des Auftrags entsprechen. Dem Teilprozess der Sortierung kann ebenfalls die Entnahmeinheit als Kosten verursachende Maßgröße zugeschrieben werden. Eine Sortierung der Aufträge ist im Rahmen des Fallbeispiels jedoch nicht erforderlich, da auftragsweise kommissioniert und somit der Auftrag bereits sortiert abgelegt wird. Dem leistungsmengenneutralen Teilprozess „Leitung der Abteilung“ kann per
Definition kein Kostentreiber zugeordnet werden. Die zuvor erläuterten Sachverhalte sind mit Hilfe des in Kapitel 6.2 bereits beschrieben Berechnungstableaus in Abbildung 80 dargestellt.

<table>
<thead>
<tr>
<th>Teilprozesse der Kommissionierung</th>
<th>Kostentreiber (Maßgröße)</th>
<th>Menge p. a.</th>
<th>min p. d.</th>
<th>Prozesskosten p. a. in Euro</th>
<th>Prozesskostensatz in Euro/ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auftragsannahme</td>
<td>Auftrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortbewegung zur Entnahme</td>
<td>Auftragsposition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entnahme</td>
<td>Entnahmeeinheit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrolle und Quittierung</td>
<td>Auftragsposition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortbewegung zur Abgabe</td>
<td>Auftrag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abgabe</td>
<td>Entnahmeeinheit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sortierung</td>
<td>Entnahmeeinheit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe der lmi-Prozesse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leitung der Abteilung</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbildung 80: Zuordnung der Teilprozesse und Kostentreiber im Rahmen der Berechnung der Prozesskostensätze

<table>
<thead>
<tr>
<th>Teilprozesse der Kommissionierung</th>
<th>Kostentreiber (Maßgröße)</th>
<th>Menge p. a.</th>
<th>min p. d.</th>
<th>Prozesskosten p. a. in Euro</th>
<th>Prozesskostensatz in Euro/ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auftragsannahme</td>
<td>Auftrag</td>
<td>65.250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortbewegung zur Entnahme</td>
<td>Auftragsposition</td>
<td>150.250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entnahme</td>
<td>Entnahmeeinheit</td>
<td>473.750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrolle und Quittierung</td>
<td>Auftragsposition</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortbewegung zur Abgabe</td>
<td>Auftrag</td>
<td>65.250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abgabe</td>
<td>Entnahmeeinheit</td>
<td>473.750</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sortierung</td>
<td>Entnahmeeinheit</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe der lmi-Prozesse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leitung der Abteilung</td>
<td>-</td>
<td>-</td>
<td></td>
<td>57.187,50</td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td></td>
<td>325.062,50</td>
<td>382.250,00</td>
</tr>
</tbody>
</table>

Abbildung 81: Zuordnung der Prozessmengen, Gesamtkosten sowie lmn/Imi – Gesamtkosten (Bezugsperiode 1 Jahr)

Zur Ermittlung der Prozesskosten sowie der Prozesskostensätze sind weitere Angaben bezüglich der Zeitangaben erforderlich. Diese Zeitdaten sind unter Zuhilfenahme der in Kapitel 4.1 bereits beschriebenen Methoden zur Zeitermittlung, wie beispielsweise MTM - Verfahren, ermittelbar:

- 0,58 Minuten Bearbeitungszeit je Auftragsannahme
- 0,90 Minuten zur Fortbewegung zwischen den einzelnen Entnahmeorten
- 0,12 Minuten zur Entnahme eines Artikels (Greifen und Ablegen)
- 0,89 Minuten zur Fortbewegung zur Abgabe
- 0,10 Minuten zur Abgabe eines Artikels

Die somit ermittelten Prozesszeiten werden mit der zugehörigen Prozessmenge je Arbeitstag (Kostentreiber) multipliziert, um so die Bearbeitungszeiten je Arbeitstag zu
ermitteln. Für die Auftragsannahme ergibt sich somit beispielsweise folgende Berechnung:

\[
\text{Teilprozess - Einzelzeit (Auftragsannahme)} = 0,58 \times \frac{\text{min}}{\text{Auftr.}} \times 261 \frac{\text{Auftr.}}{d} = 151,38 \frac{\text{min}}{d}
\]

Weiterhin wird die Gesamt-Prozesszeit je Arbeitstag ermittelt (vgl. Abbildung 82).

<table>
<thead>
<tr>
<th>Teilprozesse der Kommissionierung</th>
<th>Kostentreiber (Maßgröße)</th>
<th>Menge p. a.</th>
<th>min p. d.</th>
<th>Prozesskosten p. a. in Euro</th>
<th>Prozesskostensatz in Euro/ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auftragsannahme</td>
<td>Auftrag</td>
<td>65.250</td>
<td>151,38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortbewegung zur Entnahme</td>
<td>Auftragsposition</td>
<td>150.250</td>
<td>540,90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entnahme</td>
<td>Entnahmeeinheit</td>
<td>473.750</td>
<td>227,40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrolle und Quittierung</td>
<td>Auftragsposition</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fortbewegung zur Abgabe</td>
<td>Auftrag</td>
<td>65.250</td>
<td>232,29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abgabe</td>
<td>Entnahmeeinheit</td>
<td>473.750</td>
<td>189,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sortierung</td>
<td>Entnahmeeinheit</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe der Imi-Prozesse</td>
<td></td>
<td></td>
<td>1.341,47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leitung der Abteilung</td>
<td></td>
<td></td>
<td></td>
<td>57.187,50</td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td></td>
<td></td>
<td></td>
<td>325.062,50</td>
<td>382.250,00</td>
</tr>
</tbody>
</table>

Abbildung 82: Ermittlung der Teilprozesszeiten und der Gesamtprozesszeit je Arbeitstag

Abbildung 83: Prozesskosten- und Prozesskostensatzberechnung

Die somit ermittelten Teilprozesskostensätze ermöglichen eine verursachungsgerechte Zuweisung der anfallenden Gemeinkosten je Kostenstelle gemäß ihrer Leistungsverursachung und dem zugrunde liegendem Ressourcenverzehr des jeweiligen Teilprozesses.

Im Rahmen der Kalkulation ermöglicht die prozessorientierte Kostenverrechnung des Weitern den Einbezug von Auftragsstruktur und –größe. Dieser Zusammenhang wird durch den Vergleich der Prozesskostenrechnung mit der traditionellen Kostenrechnung in Form der einfachen Divisionskalkulation verdeutlicht. Hierzu wird die Kalkulation von drei repräsentativen, in der Auftragsstruktur differierenden Aufträgen vorgenommen:

1. Durchschnittsauftrag: 2,3 Auftragspositionen, 7,25 Entnahmeeinheiten
2. „kleiner“ Auftrag: 1 Auftragsposition, 1 Entnahmeeinheit
3. „großer“ Auftrag: 9 Auftragspositionen, 79 Entnahmeeinheiten

Die Divisionskalkulation berechnet einen Kostensatz als Relation der Periodengesamtkosten zur Auftragsanzahl der Periode. Demgegenüber setzt sich der
Kostensatz in der Prozesskostenrechnung aus auftragsbezogenen, positions-
bezogenen als auch entnahmeeinheitsbezogenen Kostensatzanteilen zusammen.

So ergibt sich, unter Annahme der im Rahmen des Fallbeispiels gegebenen Daten,
mit Hilfe der Divisionskalkulation der nachstehende Kostensatz:

\[
K_A = \frac{382.250 \, \text{€/J}}{65.250 \, \text{Auftr./J}} = 5.86 \, \text{€}
\]

Bei Anwendung der Prozesskostenrechnung werden abhängig von der Auftrags-
struktur unterschiedliche Kostensätze generiert (vgl. Abbildung 84).

<table>
<thead>
<tr>
<th>Kostensatz</th>
<th>Auftrag 1</th>
<th>Auftrag 2</th>
<th>Auftrag 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auftragsbezogen</td>
<td>1,67 €</td>
<td>1,67 €</td>
<td>1,67 €</td>
</tr>
<tr>
<td>Positionsbezogen</td>
<td>1,03 €</td>
<td>2,37 €</td>
<td>1,03 €</td>
</tr>
</tbody>
</table>
| Entnahmeeinheits-
 bezogen | 0,25 € | 1,81 € | 0,25 € |
| Summe Kosten je Auftrag | 5,85 € | 2,95 € | 30,69 € |

Abbildung 84: Abhängigkeit der Prozesskostensätze von Auftragsstruktur und –größe

Der Kostensatz des Durchschnittsauftrags entspricht per Definition dem mit Hilfe der
einfachen Divisionskalkulation errechneten Kostensatz. Unter Berücksichtigung der
in dem dargestellten Kommissioniersystem bestehenden Streuungen in der Auftrags-
struktur und –größe ergibt sich jedoch mit Hilfe der Prozesskostenrechnung ein
zwischen ca. drei Euro und über dreißig Euro differierender Kostensatz je Auftrag.
Dementsprechend variieren die tatsächlich entstandenen Kosten je Auftrag in diesem
Fall zwischen rund 50% und mehr als 500% der mit der Divisionskalkulation
ermittelten Durchschnittskosten.

Analog zur Kommissionierung wird im Folgenden die Adaption der Prozesskosten-
rechnung auf die Nacharbeits- und Retourenabwicklung dargestellt.
6.4 Kostenermittlung in der Retourenabwicklung

Zur Qualitätsoptimierung ist neben der Ermittlung der Kosten für die einzelnen Kommissionier- und Prüfprozesse auch die Kostenbetrachtung der Retouren- und Nacharbeitsprozesse erforderlich.

In diesem Zusammenhang werden die Prozesskosten zum einen für die Retourenabwicklung und zum anderen für die Nacharbeit ermittelt. Unter Berücksichtigung der in Kapitel 6.2 gegebenen Definition ist ersichtlich, dass beide Prozesse kostenstellenübergreifend gebildete Hauptprozesse repräsentieren. Betroffene Kostenstellen sind hier sowohl die in Kapitel 6.3 betrachtete Kommissionierung als auch verschiedene Kostenstellen der Verwaltung wie beispielsweise der Kundendienst oder die Buchhaltung (Rechnungskorrektur). Des Weiteren sind beispielsweise die Kostenstellen Verpackung und Lager in den Prozess der Retourenabwicklung involviert, sofern eine Weiterverwendung der reklamierten Waren vorgenommen wird. Bezugsgröße des Retourenprozesses ist der Auftrag / die Retoure; dementsprechend ist es erforderlich, die Kostensätze der einzelnen Teilprozesse auf Basis dieser Bezugsgröße, d. h. auftragsbezogen, zu berechnen.

Die Kostenstruktur für die Retourenabwicklung ist einerseits durch einen mit Hilfe der Prozesskostenrechnung ermittelbaren Kostenanteil und andererseits durch einen Anteil externer Kosten sowie diverser Zusatzkosten geprägt. Die Ermittlung des Prozesskostenanteils der Retourenkosten wird über die Kumulation der auftragsbezogenen Kostensätze der im individuellen Prozessmodell anfallenden
Teilprozesse ermittelt. Zu diesem Anteil zählt beispielsweise die zuvor erläuterte Kommissionierung, die beispielsweise im Rahmen einer Minderlieferung erneut durchzuführen ist; dort werden die auftragsbezogenen Prozesskosten, wie zuvor bereits erläutert, durch das Zusammensetzen der auftrags-, positions- und entnahmeeinheitsbezogenen Kostenanteile berechnet. Analog sind für die anderen betroffenen Kostenstellen bzw. Teilprozesse auftragsbezogene Kostensätze mit Hilfe der Prozesskostenrechnung zu ermitteln, die von den jeweilig spezifisch zu definierenden Bezugsgrößen abhängen. Somit werden hier, sofern bei dem individuellen Ablauf des Retourenprozesses vorhanden, Prozesskosten für die Wiedereinlagerung, Dokumentation, Bestandskorrektur, Retourenannahme, Überprüfung der Ware, Rechnungskorrektur, Instandsetzung und Neuverpackung der Ware ermittelt. In diesem Zusammenhang sind für diese Prozesse Bezugsgrößen zu definieren, z.B. der Auftrag, die Position oder die Entnahmeeinheit analog zur Kommissionierung oder aber auch das Gewicht oder das Volumen im Rahmen der Wiedereinlagerung oder des Transportes.

Die neben den Prozesskosten auftretenden zusätzlichen Kosten sind nicht unter Zuhilfenahme der Prozesskostenrechnung zu ermitteln. In diesem Fall wird eine direkte oder aber auch anteilige Ermittlung der Kosten vorgenommen. Bei diesem Vorgehen werden u.a. für die durch den Rücktransport reklamierter Ware anfallenden Transportkosten berücksichtigt. Analog wird mit Kosten aus einem eventuell auftretenden Wertverlust oder aus der Abschreibung der Ware resultierenden Kosten verfahren.

7 Entwicklung eines Simulationsmodells zur Prüfplanung

7.1 Simulationsgerechte Beschreibung des Referenzmodells

Das Ziel ist die Entwicklung eines Referenzmodells, um eine passende Prüfstrategie für die Kommissionierung und Verpackung zu wählen. Dabei werden die Kosten, die Qualität und die Durchlaufzeit berücksichtigt.

Dies erfordert (a) ein Prozessmodell zur Abbildung der Kommissionier- und Verpackungsprozesse inklusive der Fehlerwahrscheinlichkeit sowie der Prüfstrategie und der damit verbundenen Fehlerentdeckungswahrscheinlichkeiten. Des Weiteren (b) ein Prozessmodell, welches die Retourenabwicklung abbildet und eine Beschreibung der erforderlichen Aktivitäten zur Fehlerbehebung bei Kommissionierfehlern, die von internen Kunden (z. B. Teileproduktion, Montage,…) festgestellt werden.

Das zu entwickelnde Modell soll zudem die totalen Kosten (Zeit, Nacharbeit, Korrektur) in Abhängigkeit von der Kommissionier- und Verpackungsqualität (interne und externe Fehler) erfassen, um anschließend in ein Simulationsmodell überführt werden zu können, das die formalen Anforderungen einer Simulationssoftware erfüllt.

Zur Überführung des Referenzmodells in ein Simulationsmodell ist es nötig, Richtlinien und Werkzeuge zu definieren, die a) Prüfparameter auswählen und b) eine optimale Prüfstrategie für Kommissionier- und Verpackungsprozesse basierend auf Prüfkriterien wie z. B. Zeit, Ort, Methode, Prüfer, Prüfmittel bestimmen.

Die Durchlaufzeit ist in diesem Fall aus zwei Gründen interessant. Zum einen ist die absolute Zeit von immer größerer Bedeutung, da kurze Durchlaufzeit gleichzeitig eine schnellere Erfüllung des Kundenwunsches bedeutet. Zum anderen müssen die Abweichungen bei der Durchlaufzeit berücksichtigt werden, um eine sichere
Prognose für die Retourdaten gewährleisten zu können. Für die Prozessqualität ist die Anzahl ausgelieferter, fehlerhafter Kommissionierungen von Bedeutung (z. B. wie viele nicht-konforme Positionen wurden kommissioniert und wie viele nicht-konforme Positionen wurden nicht entdeckt?) Diese Punkte müssen mit in Betracht gezogen werden, wenn eine adäquate Prüfungsplanung erzielt werden soll.

7.1.1 Art der Prüfung

7.1.2 Zeitpunkt der Prüfung

sie unnötig den weiteren Kommissionierprozess oder verursachen eine Verzögerung bei nachfolgenden Kommissionieraufträgen.

Somit haben unterschiedliche Zeitpunkte der Prüfung Einfluss auf alle Prozesse der Kommissionierung.

7.1.3 Prüfumfang

Generell existieren zwei Möglichkeiten, anhand welcher überprüft werden kann, ob ein Auftrag den Anforderungen entspricht oder nicht. Zum einen können alle Positionen eines Auftrags geprüft werden (100%-Prüfung), z. B. werden fehlerhafte Positionen von konformen getrennt (Sortierprüfung). Zum anderen besteht die Möglichkeit, nur einen Teil der Positionen eines Auftrags zu prüfen (Teileprüfung) und auf Statistiken beruhend zu entscheiden, ob der ganze Auftrag den Anforderungen entspricht, oder ob eine 100%-Prüfung nötig ist.

![Diagramm zur Festlegung des Prüfumfangs](image)

Abbildung 86: Festlegung des Prüfumfangs

Der Anteil geprüfter Positionen beeinflusst alle Kriterien. Je mehr Positionen geprüft werden, desto mehr Zeit wird zur Durchführung der Prüfung benötigt und die Prüfkosten steigen signifikant. Zusätzlich steigt der Zeitbedarf für die Prüfung und somit die Durchlaufzeit. Den größten Effekt hat die Prüfanzahl jedoch auf die Qualität des Auftrages. Wenn die Teilprüfung angewendet wird, beinhaltet dies das Risiko,
einen Auftrag als konform zu deklarieren, obwohl dies nicht der Fall ist. Nacharbeiten hierbei verursachen weitere Kommissionierungskosten und höhere Durchlaufzeiten. Im Gegensatz zur Teileprüfung ist eine 100%-Prüfung kostenintensiver, obwohl alle Fehler vermieden werden, wenn der Prüfprozess gut genug ist [s. Crostack 2003].

7.1.4 Prüfort

Die Prüfung kann entweder direkt vor Ort am Kommissionierpunkt erfolgen oder an einem speziell vorgesehenen Prüfort.

Abbildung 87: Festlegung des Prüforts

7 Entwicklung eines Simulationsmodells zur Prüfplanung

7.1.5 Prüfmittel

Tabelle 34: Beispielhafter Vergleich der Prüfmaßnahmen:

<table>
<thead>
<tr>
<th>Prüfmaßnahme</th>
<th>Kosten</th>
<th>Flexibilität</th>
<th>Zeitaufwand der Prüfung</th>
<th>Anzahl der zu entdeckenden Fehlerart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sichtkontrolle/Checkliste</td>
<td>++</td>
<td>++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>Wiegen</td>
<td>O</td>
<td>+</td>
<td>0</td>
<td>O</td>
</tr>
<tr>
<td>Scannen: Barcode</td>
<td>O</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Scannen: Geometrie</td>
<td>O</td>
<td>-</td>
<td>O</td>
<td>-</td>
</tr>
<tr>
<td>Taktile Sensoren</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>O</td>
</tr>
<tr>
<td>Einzelquittierung</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>RFID: Online-Prizesskontrolle</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
</tbody>
</table>

Legende: ++ sehr gut, + gut, o befriedigend, - ausreichend, -- mangelhaft

Eine weitere Maßnahme, die neben der Sichtkontrolle beim Kommissionieren aussichtsreich ist, ist die Online-Prizesskontrolle mittels RFID-Tags. Durch die computergesteuerte, automatische Erfassung ist der Zeitaufwand im Vergleich zu
allen anderen Maßnahmen am geringsten. Die Fehlerentdeckungsquote ist auch vergleichsweise gut, wobei durch die Anzahl gleichzeitig zu erfassender Artikel beeinflusst wird. Flexibilität ist durch RFID ebenso gewährleistet. Allerdings handelt es sich bei RFID um eine sehr teure Methode.

Das Scannen von Artikeln ist zu unterteilen in Geometrie-Scan und Barcode-Scan. Letzteres hat in Hinsicht auf Flexibilität, Zeitaufwand und Fehlerentdeckungswahrscheinlichkeit durchaus seinen Vorteil. Es handelt sich hierbei jedoch – genau wie bei der RFID-Technik, um eine teure Maßnahme. Der Geometrie-Scan bedarf - ebenso wie der Barcode-Scan – höherer Kosten und höherem Zeitaufwand. Die mangelnde Flexibilität und der eher geringere Erfolg bei der Fehlerentdeckung, verursacht durch gleichartige Geometrien verschiedener Artikel, grenzt die sinnvolle Nutzung dieser Maßnahme weiter ein.

Ähnliches gilt für taktile Sensoren, die lediglich bezüglich des geringeren Zeitaufwands in der Prüfung von Vorteil sein könnten.

Die Einzelquittierung verhält sich ähnlich der Sichtkontrolle.

Neben den oben angeführten Aspekten ist zudem zu berücksichtigen, nach welchem Fehler gesucht werden soll. Je nachdem, ob es sich um Mengen-, Typ, Auslassungs- oder Zustandsfehler handelt, die detektiert werden sollen, werden die Prüfmaßnahmen schließlich bestimmt. In der nachfolgenden Tabelle ist daher beispielhaft für eine Fallstudie dargestellt, welche Prüfverfahren sich in der Kommissionierung bezüglich der Fehlerarten eignen können.
Tabelle 35: Prüfmaßnahmen – Zuordnung der Fehlerarten

Für die Erfassung von Auslassungsfehlern eignen sich bis auf der Geometrie-Scan und das Wiegen alle Maßnahmen, auf Grund der Handlungsweise des Kommissionierers. Die Begründung des schlechten Abschneidens von Geometrie-Scan und Waage ist erneut auf die Ähnlichkeiten der Artikel zurückzuführen.

In Bezug auf Zustandsfehler sind nur die Sichtprüfung, der Barcode-Scan und die Einzelquittierung erfolgversprechend, da der Kommissionierer jeden Artikel „in der

7.2 Auswahl des geeigneten Simulationswerkzeugs

Die Auswahl eines geeigneten Simulationstools, das die zuvor beschriebenen Kommissionierprozesse abbilden kann und des Weiteren verschiedene Prüfstrategien berücksichtigen kann, ist der nächste Schritt in diesem Projekt. Die Bewertung von Vor- und Nachteilen der existierenden Tools wird ebenso in Zusammenarbeit mit den Vertretern der Arbeitskreisunternehmen durchgeführt wie

7.2.1 Unterschiedliche Arten der Simulation

Statisch - Dynamisch

Im Falle von QUINKOM ist die Verwendung eines dynamischen Modells nötig, da sich die Auftragsstrukturen ständig ändern, somit kein bestimmter Zeitpunkt betrachtet wird, sondern die Entwicklung der Positionen pro Auftrag über einen gewissen Zeitraum.

Deterministisch - Stochastisch

Deterministische Simulationen vernachlässigen die Tatsache, dass eine Vielzahl von Variationen beim abzubildenden System existiert, da diese als unbedeutend für die zu treffenden Entscheidungen angesehen werden. In real abgebildeten Systemen ist dies jedoch nur sehr selten der Fall. Willkürliche und unvorhersagbare Variablen aus der Umwelt haben Auswirkungen auf das System oder seine Komponenten. Mit Hilfe des stochastischen Modells werden explizit wichtige Variablen abgebildet. Hierdurch
entstehen allerdings nicht gesicherte Outputs, was beim Design und der Interpretation der Testläufe berücksichtigt werden müssen.

Aufgrund der benötigten Variablen zur Erstellung unterschiedlicher Auftragsgrößen (wechselnde Position pro Auftrag) und auch der Anzahl der Artikel pro Position ist es bei QUINKOM nötig, eine Software zu verwenden, die stochasticische Funktionen gewährleistet.

Kontinuierlich - Diskret

In einem Modell können sowohl kontinuierliche als auch diskrete Elemente miteinander verbunden sein. Dies wird dann als kombiniertes Modell bezeichnet.

Da bei der Kommissionierung die Prozesse mit Hilfe des Referenzmodells abgebildet werden, in die die Prüfstrategien integriert sind, werden keine Veränderungen während des Durchlaufs eines Auftrags an den Prozessen vorgenommen. Es wird daher von einer diskreten Simulation ausgegangen

Anforderungen an das Simulationstool

Aus den oben genannten Aspekten ist ersichtlich, dass es nötig ist, eine Simulationssoftware auszuwählen, welche es dem Anwender ermöglicht, dynamische Modelle zu erzeugen, die mit stochasticischen Komponenten arbeiten können. In Bezug auf den Status des Systems ist es allerdings ausreichend, wenn diskrete Aspekte abgebildet werden können.

den im Rahmen eines anderen AIF-Projektes entwickelten Simulator QUINTE+ sowie das prozessorientierte Allround-Simulationstool ARENA.

Betrachtet wurden die nachfolgend aufgeführten Simulationstools:

- **Arena**
 prozessorientierte Allround Simulation

- **Taylor II/ED**
 Simulation von Materialfluss- und Produktionsanlagen

- **3D Produktsuite**
 Schnelle und einfache Anlagen- und Maschinenkonfiguration

- **eM-Plant**
 Simulation von Materialfluss- und Produktionsanlagen

- **FreD**
 Simulation des Ressourcenbedarfs mit beliebig vielen Arbeitsplatzmodellen

- **Whitness**
 Modellierung und Simulation von Geschäfts- und Technikprozessen

- **Factor**
 Simulation von Materialfluss- und Produktionsanlagen

- **Dosimis**
 Simulation von Materialfluss- und Produktionsanlagen

- **Laplas**
 materialflussorientierte Optimierung von Flächenanordnungen in Produktionsanlagen

Simulationstool QUINTE+

Mit Hilfe des Simulators QUINTE+ können diese Einflüsse der Prüfstrategie auf die Fertigung ermittelt werden. Besonderer Vorteil von QUINTE+ ist dabei die
gleichzeitige Berücksichtigung aller drei Dimensionen der Unternehmensziele Qualität, Kosten und Durchlaufzeit und somit eine ganzheitliche Betrachtung des Unternehmenserfolgs.

Erfolgreich eingesetzt wurde der Simulator QUINTE+ z. B. in einem Unternehmen der Messer- und Schneidwarenindustrie. Primäres Ziel der Untersuchung stellte die Reduzierung des Fehleranteils dar. [Crostack05a]

Dennoch hat QUINTE+ in Bezug auf das hiesige Simulationsproblem einige Nachteile. So existiert z. B. keine Möglichkeit der Animation. Es können nur begrenzte Distributions-Prozesse abgebildet werden und es ist schwierig, Komponenten oder Funktionen von QUINTE+ ohne umfangreiche Kenntnisse in der Programmiersprache C/C++ zu modifizieren oder zu erweitern.

7.2.2 Simulationstool ARENA

ARENA Professional Edition ist ein fortgeschrittenes Simulationssystem. Es bietet eine interaktive Umgebung zum Aufbau, graphischen Animation, Verifizierung und Analyse von Simulationsmodellen. Es besteht die Möglichkeit, spezifische ARENA Templates speziell für ein bestimmtes Projekt oder Unternehmen zu erstellen. Dabei fundiert das Programm auf ARENAs hierarchischen Struktur, was es dem Anwender ermöglicht, eigene Simulationstools in graphisch, einfach anzuwendender Umgebung zu erstellen.

Die in ARENA erstellten Module werden anschließend in die Bibliothek übernommen, welche die Module als Templates zur Verfügung stellt. Die Templates können anschließend die eigene Simulation unterstützen oder mit anderen Simulations-Anwendern geteilt werden.

So hat der Anwender mit Hilfe der ARENA-Umgebung die Möglichkeit, Prozesse zu kreieren und zu animieren, zudem die ARENA-Statistik-Analysen zu fahren und die anwenderfreundlichen Funktionen zu nutzen. Des Weiteren kann ARENA ohne großen Aufwand modifiziert oder erweitert werden, ohne das Programmierkenntnisse erforderlich sind, da ARENA auf sogenannten „point and click interfaces“ beruht und Daten in vom System bereitgestellten Dialogboxen eingegeben werden.

Diese Aspekte Standen bei der Entscheidung für ARENA eindeutig im Vordergrund.
8 Durchführung von Simulationen

8.1 Erstellen des Simulationsmodells

Auf Grundlage des Referenzmodells sind Kommissionier- und Prüfprozesse abzubilden. Hierfür sind zunächst Objekte in ARENA zu implementieren, die die benötigten Daten zur Simulation aufgreifen und verarbeiten können. Im Folgenden sollen zunächst solch Prüf- und Kommissioniermenüs beschrieben und anschließend die Generation von Auftragsstrukturen und die Auswertung betrachtet werden.

8.1.1 Die Prüf- und Kommissioniermenüs

Mit Hilfe der Prüf- und Kommissioniermenüs sollen die nötigen Parameter der Prozesse in der Simulation hinterlegt werden.

Abbildung 88: Abbildung der Prüf- und Kommissioniermenüs in ARENA

Das Modul Kommissioniermenü fragt vom Benutzer bei Einbau in das Template die diversen für die Abbildung des speziellen Kommissionierprozesses benötigten Daten ab, wie in Abbildung 89 ersichtlich.
Abbildung 89: Abfragefenster Kommissioniermenü

Abbildung 90: Abfragefenster Prüfmenü

Falls es sich um eine prozessferne Prüfung handelt, sind unter dem gleichnamigen Menü die Transportzeit zum Prüfort, vom Prüfort zurück und die Transportkosten
angegeben. Im Menüpunkt Prüfgerät wird angegeben, um welches Prüfmittel es sich handelt und wie hoch die Fehlerentdeckungswahrscheinlichkeit in Bezug auf die verschiedenen Fehlerarten ist. Des Weiteren wird durch die Eingabe der Prüfmittelnummer das Prüfmittel eindeutig identifiziert.

![Abbildung 91: Weiterführende Abfragefenster zum Prüfgerät](image)

Der Aspekt Zeit und Kosten ähnelt dem des Prüfmenüs, nur dass noch weitere Aspekte hinzukommen. So wird bei der Zeit noch die Arbeitszeit für den Prüfvorgang mit abgefragt. Im Bereich Kosten sind die Punkte Personalanzahl, Stundenlohn, Anschaffungs- und Wartungskosten auszufüllen.

8.1.2 Erzeugung von Aufrägen und Positionen

Durch die zusätzlichen Prozessparameter wie z. B. Auftragsspezifikationen soll das Simulations-Szenario möglichst realistisch werden und auch bei der späteren Analyse Anhaltspunkte zur Optimierung der Prozesse liefern. Es ist dabei erforderlich, die Simulation auf repräsentativen Aufträgen aufzubauen. Dies erfolgt bei QUINKOM anhand der Logik, die im Bereich Auftragsgenerierung und –auswertung hinterlegt ist.

8.1.3 Auswertung

8 Durchführung von Simulationen

Abbildung 94: Zweiter Teil der Auswertung

Ist ein Auftragsfehler festgestellt worden, so wird bei der Kondition „Fehler im Auftrag“ (siehe Abbildung 94) dementsprechend der Zähler erhöht, vorausgesetzt, dass nicht bereits eine vorherige Position des gleichen Auftrags diesen Schritt ausgelöst hat. Bei jeder fehlerhaften Position wird durch die Kondition „Produktfehler“ der entsprechende Zähler um Faktor 1 erhöht. Durch die Verknüpfung der Auswertungssystematik mit der Generierung der Auftragsstruktur ist gewährleistet, dass mehrere Positionsfehler pro Auftrag berücksichtigt werden können.

8.1.4 Abbildung von Prozessketten

Basierend auf den Elementen des Referenzmodells kann mit Hilfe der oben genannten Kommissionier- und Prüfmenüs sowie von Objekten eine standardisierte Kommissioniersequenz abgebildet werden.

Abbildung 95: Objekt zur Darstellung des Prozessschrittes „Entnahme des Artikels“

Neben der Benennung des Objekts können hier noch die Logik und die Verzögerung, die aufgrund des Zeitbedarfs zur Ausführung des Prozesses entsteht, hinterlegt werden.

Zur Abbildung des Simulationsmodells erfolgt die Verknüpfung der oben genannten Menüs und Objekte in der genannten Reihenfolge. Ausgehend von den in Kapitel 3.1 dargestellten Prozessketten, welche durch Literatur und Diskussionen mit Mitgliedern des Projektbegleitenden Ausschusses spezifiziert wurden, ergibt sich folgende beispielhafte Simulationsstruktur:

Abbildung 96: Abbildung eines Fallbeispiels in ARENA
8 Durchführung von Simulationen

8.1.5 Simulationsergebnisse

Durch Zusammenführen der erstellten Prozessketten für die Auftragserstellung und des Referenzmodells für Prüf- und Kommissionierprozesse ergibt sich somit das ganzheitliche Simulationsmodell, das zum Abschluss die Auswertung enthält, die der Erzeugung von Reports dient. Mit Hilfe der Reports können die nötigen Daten zur Analyse und Optimierung der Prozesse ausgegeben werden. Um die Nutzung der Daten in Form von Ergebnisvergleichen zu verbessern, ist im Rahmen von QUINKOM zudem der Transfer der Daten in Excel-Sheets ermöglicht worden. Hierdurch wird eine grafisch unterstützte und somit oft verständlichere Auswertung gewährleistet.

Abbildung 97: Report aus ARENA

Die oben aufgeführte Abbildung zeigt einen durch ARENA kreierten Report nach Beendigung der Simulation. Diesem Report kann der Anwender neben der simulierten Dauer aus der Kopfzeile die Anzahl an Fehlern je Fehlerart und die
Durchführung von Simulationen

anfallenden Zeiten bezüglich Prüfung, Transport, Arbeit und Kosten dazu entnehmen.

Es werden dabei zwei verschiedene Grafiken erzeugt. Zum einen werden die Fehlerarten thematisiert (siehe Abbildung 98). Der Anwender kann dort die Anzahl an Fehlern pro 1000 Auftragspositionen ablesen.

Abbildung 98: Menge an Fehlerarten je 1000 Auftragspositionen

Darüber hinaus werden die benötigten Zeiten für die Prozesse dargestellt. Dabei werden die Zeiten für den Arbeitsprozess, Vorbereitungszeiten, Warte- und Prüfzeiten angegeben (siehe Abbildung 99).
8.2 Erhebung von Daten anhand des Datenerhebungsblatts

Um die im Kapitel 3 erstellten Prozesse realitätsgetreu simulieren und hinsichtlich der Prüfung optimieren zu können, ist es nötig, die reale Welt im Unternehmen an Hand von Daten abzubilden. Hierfür ist auf Basis von QUINTE+ ein Fragebogen entwickelt worden, der u. a. relevante Zeitdaten zu den Prozessen erfasst. Dieser Bogen ist im Rahmen von QUINKOM auf die Problematik des Kommissionierens übertragen worden.

8.2.1 Datenerhebungsblatt

Der entwickelte Fragebogen erhebt dabei Daten aus fünf verschiedenen Bereichen, zum einen den Kommissionierbereich. Schwerpunkte liegen neben der Identifizierung von Systemen auf den Lauf- und Rüstzeiten sowie der Kapazitäten.
Kommissionierbereich

29. Kommissionierbereichsname/-nummer

30. Anzahl Bereitstellorte, Gänge

31. Stundensätze für die Mitarbeiter und Betriebsmittel (EDV, Fördertechnik, Stapler, Scanner etc.)

32. Beginn und Ende der Tageslaufzeit

33. Kapazitätsquerschnitte für Betriebsmittel und Mitarbeiter

Ein weitere Abschnitt sind die Ausführungs- und Transportzeiten. Hierunter sind zum einen die benötigten Zeiten für den Kommissionierprozess zu verstehen und zum anderen technisch bedingte Zeiten für automatisierte Prozesse.

Ausführungs- und Transportzeiten

1. Zeiten manueller Teilvorgänge innerhalb des Kommissionierprozesses
 a. Dauer pro Entnahmeeinheit (Greifzeit)
 b. Dauer pro Identifikationsvorgang
 c. ggf. Wegezeiten zwischen Entnahmen
 d. auftragsbezogene Zeiten (Annahme, Abgabe, Sortierung, Verpackung etc.)

2. Technisch bedingte Zeiten
 e. ggf. Transportzeiten bei automatisiertem Transport
 f. ggf. Prozesszeiten automatisierter Teilprozesse (Sortierung, Identifikation etc.)

Eine weitere Kategorie stellt der Prüfumfang dar, wobei hier zwischen zwei Alternativen gewählt werden kann.

Prüfumfang

1. 100%-Prüfung
2. Teilprüfung

Die Eigenschaften des Prüfmittels werden im nächsten Abschnitt erfasst. Es werden die Stundensätze für die Prüfung und Rüstung erfasst, um anschließend bei der
Simulation durch Kopplung mit den Kosten für einen Mitarbeiter der Prüfung Personalkosten mit zu berücksichtigen.

Prüfmittel

1. Prüfmittelsname/-nummer
2. Rüst-Stundensatz
3. Prüf-Stundensatz
4. Rüstzeit (die mittlere Zeit)
5. Einzelzeit (die mittlere Zeit)

6. Merkmalskategorie, die mit Hilfe des Prüfmittels geprüft werden können.

Die Kategorie Aufträge befasst sich den Strukturen der zu simulierenden Objekte. Mit Hilfe dieser Daten soll gewährleistet werden, dass in der Simulation zwischen fehlerhaften Positionen als auch Aufträgen unterschieden werden kann. Denn nur wenn die Abschätzungen der Positionen pro Auftrag stimmen, kann eine realistische Simulation fehlerhafter Aufträge erfolgen.

Aufträge

1. Auftragsnummer
2. Auftragsstruktur
 a. Anzahl Positionen
 b. Anzahl Entnahmeeinheiten je Position

Die Artikeleigenschaften beinhalten das Gewicht und die Geometrie von Artikeln sowie deren Streuung.

Artikeleigenschaften

1. Artikelgewicht, Streuung (für Abwiegen)
2. Geometrie, Streuung

Im Bereich „Fehlhandlungs- und Fehlerentdeckungswahrscheinlichkeiten“ werden die Fehlhandlungswahrscheinlichkeiten nach Mengen,- Typ-, Auslassungs- und Zustandsfehler differenziert. Hierdurch soll ersichtlich werden, was für ein Verbesserungspotential vorhanden ist und auf welche Weise dies am besten umgesetzt wird. Je nach Fehlerart sind unterschiedliche Prüfmittel geeignet. Im
Zusammenhang hierzu wird zudem die Fehlerentdeckungswahrscheinlichkeit eines jeden Prüfmittels erfasst.

Fehlhandlungs- und Fehlerentdeckungswahrscheinlichkeiten

1. Fehlhandlungswahrscheinlichkeiten für alle Teilprozesse der Kommissionierung
 a. Fehlhandlungswahrscheinlichkeit Mengenfehler
 b. Fehlhandlungswahrscheinlichkeit Typfehler
 c. Fehlhandlungswahrscheinlichkeit Auslassungsfehler
 d. Fehlhandlungswahrscheinlichkeit Zustandsfehler

2. Fehlerentdeckungswahrscheinlichkeiten für alle Teilprozesse der Prüfung differenziert nach Fehlerarten
 a. Fehlerentdeckungswahrscheinlichkeit ohne (Sichtprüfung)
 b. Fehlerentdeckungswahrscheinlichkeit stationäre Datenterminals
 c. Fehlerentdeckungswahrscheinlichkeit mobile Datenterminals
 d. Fehlerentdeckungswahrscheinlichkeit stationäre Lesegeräte
 e. Fehlerentdeckungswahrscheinlichkeit mobile Lesegeräte
 f. Fehlerentdeckungswahrscheinlichkeit Lese-/Speichergeräte
 g. Fehlerentdeckungswahrscheinlichkeit stationäre Wägesysteme
 h. Fehlerentdeckungswahrscheinlichkeit mobile Wägesysteme
 i. Fehlerentdeckungswahrscheinlichkeit Lichtschranken
 j. Fehlerentdeckungswahrscheinlichkeit Bildverarbeitung

8.2.2 Probleme der Datenerhebung

Im Rahmen des Projekts hat sich bei der Zusammenarbeit mit den Unternehmen jedoch herausgestellt, dass die Anwender von Kommissioniersystemen Schwierigkeiten mit der Erfassung und Bereitstellung der im Fragebogen geforderten Daten haben. Es werden zwar Werte wie Durchlaufzeit, Rüstzeit, etc. zwischenzeitlich dokumentiert, aber eine konsequente und umfassende Auflistung der benötigten Daten und deren detaillierte Aufschlüsselung erfolgt nicht. Die Gewinnung besagter Daten ist zudem mit einem erheblichen Zeitaufwand verbunden und wird daher vom Unternehmen nicht durchgeführt. Stattdessen wird eine
8 Durchführung von Simulationen

Schätzung bevorzugt. Im weiteren Verlauf des Projekts wird daher zunächst auf Basis von Schätzungen simuliert. Diese Schätzwerte stammen aus Fallbeispielen.

8.3 Erstellen von Simulationsvarianten

Im Rahmen des QUINKOM-Projekts sind fünf Simulationsvarianten mit Hilfe der oben vorgestellten Menüs und Objekte erstellt worden, um Kommissionierprozesse abzubilden und verschiedene Prüfstrategien einzubinden. Dabei sind jeweils 10.000 Positionen generiert worden, wobei jeder Auftrag 50 Positionen umfasst. Im Folgenden werden die getesteten Simulationsvarianten zunächst vorgestellt, wobei aufgezeigt wirkt, in wie fern sich die Prüfstrategien hinsichtlich Zeitpunkt und Art unterscheiden. Die Auswertung der Ergebnisse der Simulationen erfolgt in Kapitel 9.

Variante 1

Die in Variante 1 verwendeten Kommissionierprozesse lehnen sich an das in Kapitel 3 entwickelte Referenzmodell an (siehe Abbildung 100).

Abbildung 100: Variante 1

Des Weiteren sind in das Modell zwei Prüfungen integriert worden. Die erste Prüfung erfolgt im Prozess „manuelle Identifikation des Artikels“ durch eine Sichtprüfung des Kommissionierers. Hier wird der auf die Verpackung aufgedruckte Artikelname mit
den Angaben auf dem Kommissionierbeleg verglichen. Die Fehlerentdeckungswahrscheinlichkeit für Typfehler beträgt hierfür 70%. Bei Auslassungsfehlern 10%. Da zu dem Zeitpunkt noch keine Artikel entnommen werden, entfällt auf Mengen- und Zustandsfehler 0% Fehlerentdeckungswahrscheinlichkeit.

Die zweite Prüfung erfolgt beim Prozessschritt „Quittierung der Entnahme“. Auch hier erfolgt eine Sichtprüfung, wobei von 30% Entdeckungswahrscheinlichkeit bei Typ- und Mengenfehlern ausgegangen wird. Auslassungsfehler werden mit 80%er Wahrscheinlichkeit detektiert, während Zustandsfehler nicht erfasst werden.

Variante 2

![Diagramm der Variante 2](image)

Abbildung 101: Variante 2

Diese Variante (Abbildung 101) unterscheidet sich von der ersten Simulationsvariante durch eine weitere Prüfung beim Prozessschritt „Identifikation der Verpackungseinheit“. Der Kommissionierer prüft mittels Sichtkontrolle auf Zustandsfehler der im Fach sichtbaren Ware, wobei der Erfolg bei bei 70% liegt.
Variante 3

Anstelle einer Prüfung nach der Identifikation der Verpackungseinheit wird in Variante 3 (siehe Abbildung 102) die Prüfung nach der Entnahme des Artikels durchgeführt. Die Fehlerentdeckungswahrscheinlichkeiten werden dabei weiterhin mit je 70% für Typ- und Zustandsfehler angegeben.

Variante 4

Anstelle der Sichtprüfung wird in dieser Simulation nun die Prüfmaßnahme Scanner beim Prozess „Identifikation des Artikels manuell“ eingesetzt (siehe Abbildung 103).
Hierfür wird für Typfehler und Auslassungsfehler eine Entdeckungswahrscheinlichkeit von 100% angesetzt. Darüber hinaus werden Sichtkontrollen bei der Quittierung der Entnahme durchgeführt, wie sie in Variante 1 bereits zum Einsatz kommen.

Variante 5

In der fünften Variante (siehe Abbildung 104) werden die gleichen Prüfstrategien wie in der ersten Variante berücksichtigt.

Abbildung 104: Variante 5

Zusätzlich wird am Ende der Prozesse jedoch noch eine weitere Prüfung mit dem Barcode-Scanner durchgeführt. Es werden die gesamten Aufträge auf ihre Richtigkeit geprüft. Dabei werden zu 100% Auslassungs- und Typfehler detektiert, 50% aller Mengenfehler werden erkannt und 80% aller Zustandsfehler.
9 Nachweis der Wirtschaftlichkeit

9.1 Aufwand der qualitativen Betrachtungsweise

Die qualitative Betrachtung gliedert sich in auf der Aufwandsseite in die Bereiche Systemanalyse, Modellaufbau und Simulationsexperimente.

In Bezug auf QUINKOM wird im Rahmen der Systemanalyse eine Datenerfassung durchgeführt und des Weiteren die Prozesse der Kommissionierung, Verpackung und der Prüfung erfasst. Dieser Aufwand ist durch die hierfür benötigte Zeit und das Personal zu verifizieren.

Die Abbildung der Prozesse hängt zeitlich davon ab, in wie weit im Unternehmen bereits Kommissionierprozesse dokumentiert sind. Da im Kapitel 3.1 im Rahmen des QUINKOM-Projekts bereits ein Referenzmodell entwickelt worden ist, kann bei mangelhafter Prozessbeschreibung im Unternehmen dieses Modell zu Rate gezogen werden, so dass zeitaufwendigere Prozessanalysen entfallen. Für die Erstellung einer prozessgetreuen Simulation, die als Ausgangsbasis für die Erstellung diverser Simulationsvarianten mit unterschiedlichen Prüfstrategien dient, wird daher ein Arbeitstag á 8 Stunden angesetzt.

Zeitaufwendiger ist die Erhebung der für die Simulation benötigten Daten. Bereits in Kapitel 8.2.2 ist auf die Problematik der Datenerhebung in dem im Projektbegleitenden Ausschuss beteiligten Unternehmen eingegangen worden. Die hierfür benötigten Zeiten müssen daher zunächst geschätzt werden. Je nach
Datenlage benötigt die Gewinnung der Daten unterschiedlich lange. So kann die Erhebung ein bis zehn Tage in Anspruch nehmen. Daher wird bei der weiteren Untersuchung der Wirtschaftlichkeit davon ausgegangen, dass im Mittel 4 Tage á 8h für die Datenerhebung benötigt werden.

Für die Beschaffung der Software ARENA sind Kosten von 795US$ (entsprechen ca. 600€) zu berücksichtigen. Darüber hinaus wird der verantwortliche Ingenieur sich in die Software zunächst einarbeiten müssen, was mit einem Manntag zu veranschlagen ist.

Somit ergeben sich für die Implementierung folgende Kosten:

<table>
<thead>
<tr>
<th></th>
<th>Manntage</th>
<th>Stunden</th>
<th>Stundenlohn</th>
<th>Gesamt €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arena</td>
<td></td>
<td></td>
<td></td>
<td>600</td>
</tr>
<tr>
<td>Einarbeitung Arena</td>
<td>1</td>
<td>8</td>
<td>50</td>
<td>400</td>
</tr>
<tr>
<td>Datenerhebung</td>
<td>4</td>
<td>32</td>
<td>50</td>
<td>1600</td>
</tr>
<tr>
<td>Simulationen erstellen</td>
<td>1</td>
<td>8</td>
<td>50</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3000</td>
</tr>
</tbody>
</table>

Tabelle 36: Kosten für die Implementierung

9.2 Nutzen der qualitativen Betrachtungsweise

Zum Nutzen von Simulationen zählen qualitativ folgende Aspekte laut VDI 3633 [VDI 3633 1996]:

- Sicherheitsgewinn
- Kostengünstigere Lösungen
- Besseres Systemverständnis
- Günstigere Prozessführung

All diese Aspekte sind jedoch nur schwer bezüglich des Nutzens zu erfassen. Mit Hilfe von QUINKOM kann beispielsweise festgestellt werden, welche Prozesse optimiert werden können, wie diese Optimierung aussehen kann und wie dadurch Retouren vermieden werden, bzw. wie viele. Doch eine allgemeine Beschreibung dieser qualitativen Verbesserung ist kaum möglich. Sie ist von Projekt zu Projekt unterschiedlich. Um die oben aufgeführten Aspekte jedoch nicht zu vernachlässigen, werden im folgenden Kapitel, welches sich mit der quantitativen Betrachtung jeder Simulationsvariante befasst, nochmals die hier aufgeführten Aspekte in der Hinsicht
mit aufgegriffen, dass Retouren und Prüfkosten für die diversen Varianten monetär erfasst und miteinander verglichen werden.

9.3 Einfluss der Prüfstrategien auf die Qualität

Im Rahmen der quantitativen Betrachtungen werden im Folgenden zunächst exemplarisch die Ergebnisse der Simulationsvarianten bezüglich der Fehlerquoten gegenüber gestellt. Anschließend erfolgt die Festlegung der Kommissionier-, Prüf- und Retourenkosten der Varianten, welche monetär auch die unterschiedlichen Kommissionier- und Prüf-Zeiten berücksichtigen, um abschließend die aus Kosten/Nutzen-Gesichtspunkt optimale Variante zu ermitteln.

Die Durchführung der in Kapitel 8.3 beschriebenen Simulationsvarianten haben die in Tabelle 37 ersichtlichen Ergebnisse zur Folge:

<table>
<thead>
<tr>
<th>Variante</th>
<th>Interne Fehler</th>
<th>Externe Fehler</th>
<th>Anzahl fehlerhafter Aufträge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Auslasung Menge Typ Zustand Summe</td>
<td>Auslasung Menge Typ Zustand Summe</td>
<td></td>
</tr>
<tr>
<td>0%Prüfung</td>
<td>0 0 0 0 0</td>
<td>11 6 37 9 63</td>
<td>60</td>
</tr>
<tr>
<td>1</td>
<td>5 0 26 3 34</td>
<td>6 11 11 6 34</td>
<td>28</td>
</tr>
<tr>
<td>2</td>
<td>6 0 32 7 45</td>
<td>5 8 5 2 20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>8 0 34 5 47</td>
<td>3 7 3 4 17</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>11 2 37 2 52</td>
<td>0 4 0 7 11</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>11 3 37 7 58</td>
<td>0 3 0 2 5</td>
<td>4</td>
</tr>
</tbody>
</table>

Tabelle 37: Interne und Externe Fehlerquoten der Varianten

Wie zu erwarten, werden beim Fehlen jeglicher Prüfung keine internen Fehler detektiert. Alle 63 Fehler werden erst beim Kunden, also extern, entdeckt.

Die zweitbeste Lösung ist die Variante 4. Mit Hilfe der Prüfstrategie der Variante 4 können 52 Fehler erkannt werden, lediglich 11 Fehler (10 Aufträge) werden an den
Nachweis der Wirtschaftlichkeit

Kunden ausgeliefert. Dabei werden im Vergleich zu Variante 5 lediglich zwei Sichtprüfungen durchgeführt. Durch den gewählten Zeitpunkt können die Prüfungen bezüglich mehrerer Fehlerarten durchgeführt werden, die bei der Maßnahme Sichtprüfung zudem eine hohe Entdeckungswahrscheinlichkeit aufweisen.

Die Varianten 2 und 3 unterscheiden sich kaum von dem Ergebnis. Es werden bei Variante 3 insgesamt 47 fehlerhafte Positionen durch die Prüfung erkannt, 17 Positionen (bzw. 16 Aufträge) gehen allerdings noch fehlerhaft an den Kunden. Das schlechtere Abschneiden zu Variante 5 ist darin begründet, dass der gewählte Zeitpunkt der Prüfung lediglich die Detektion einer bestimmten Fehlerart zu lässt oder eine schlechtere Fehlerentdeckungswahrscheinlichkeit aufweist.

Auch Variante 2 ist im Vergleich hinsichtlich der Fehlerentdeckungsquote als schlecht zu bewerten. Es werden zwar 45 Fehler erkannt, allerdings werden dennoch 20 fehlerhafte Positionen (bzw. Aufträge) an den Kunden versandt.

Variante 1 schneidet am schlechtesten ab. Lediglich 34 Fehler werden intern erkannt, 34 Positionen (bzw. 28 Aufträge) werden fehlerhaft an den Kunden geliefert. Die gewählte Prüfstrategie mit zwei Sichtprüfungen innerhalb der Kommissionierprozesse ist auf Grund der verhältnismäßig schlechten Entdeckungsraten anscheinend nicht geeignet.

Die Fehlerquote an sich ist jedoch nicht das einzige entscheidende Kriterium, ob eine Prüfstrategie die optimale ist. Es müssen darüber hinaus auch die Kosten mit berücksichtigt werden, worauf im folgenden Kapitel näher eingegangen wird.

9.4 Einfluss der Prüfstrategien auf die Kosten

Um die verschiedenen Alternativen hinsichtlich ihrer Wirtschaftlichkeit vergleichen zu können, ist es zunächst erforderlich, für alle Varianten des simulierten Kommissioniersystems die Kostensätze aller Teilprozesse der Kommissionierung und Prüfung sowie der Nacharbeit und der Retourenabwicklung zu ermitteln. Dies erfolgt auf Basis der in Kapitel 6 dargestellten Vorgehensweise zur Adaption der Prozesskostenrechnung.

Für Variante 1 ergeben sich die in Abbildung 105 dargestellten Prozesskostensätze mit der jeweiligen Bezugsgröße Auftrag, Position oder (Entnahme-)Einheit. Für die
Nachweis der Wirtschaftlichkeit

Fehlerfolgekosten der Nacharbeit bzw. Retourenabwicklung ist die entsprechende Bezugsgröße jeweils der fehlerhafte Auftrag (bei Nacharbeit intern, bei Retouren extern).

<table>
<thead>
<tr>
<th>Teilprozesse</th>
<th>Kommissionier- / Prüfprozess</th>
<th>Bezugsgröße</th>
<th>Kostensatz je ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auftragsannahme</td>
<td>K</td>
<td>Auftrag</td>
<td>0,30 €</td>
</tr>
<tr>
<td>Ablesen der Auftragsposition</td>
<td>K</td>
<td>Position</td>
<td>0,03 €</td>
</tr>
<tr>
<td>Weg festlegen</td>
<td>K</td>
<td>Position</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Fortbewegung eindimensional man.</td>
<td>K</td>
<td>Position</td>
<td>0,20 €</td>
</tr>
<tr>
<td>Identifikation des Bereitstellortes man.</td>
<td>K</td>
<td>Position</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Identifikation des Artikels man.</td>
<td>P</td>
<td>Position</td>
<td>0,03 €</td>
</tr>
<tr>
<td>Identifikation der Verpackungseinheit man.</td>
<td>K</td>
<td>Position</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Entnahme</td>
<td>K</td>
<td>Einheit</td>
<td>0,04 €</td>
</tr>
<tr>
<td>Quittierung der Entnahme</td>
<td>P</td>
<td>Position</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Abgabe (Versand)</td>
<td>K</td>
<td>Auftrag</td>
<td>0,40 €</td>
</tr>
<tr>
<td>Fehlerfolgekosten</td>
<td>intern / extern</td>
<td>Bezugsgröße</td>
<td>Kostensatz je ME</td>
</tr>
<tr>
<td>Nacharbeit</td>
<td>intern</td>
<td>Fehlerhafter Auftrag</td>
<td>9,50 €</td>
</tr>
<tr>
<td>Retouren</td>
<td>extern</td>
<td>Fehlerhafter Auftrag</td>
<td>30,00 €</td>
</tr>
</tbody>
</table>

Abbildung 105: Kostensätze der Teilprozesse von Variante 1 des simulierten Kommissioniersystems

Da die Kommissionier-, Nacharbeits- und Retourenprozesse für die einzelnen Alternativen nicht variiert werden, sind die hierfür errechneten Kostensätze bei allen Varianten identisch. Die Variation der Prüfstrategie führt jedoch zu unterschiedlichen Teilprozessen der Prüfung mit teilweise unterschiedlichen Kostensätzen und Bezugsgrößen.

Bei Variante 2 wird zusätzlich zu den Prüfschritten der manuellen Identifikation des Artikels und der Quittierung der Entnahme, welche identisch mit Variante 1 sind, eine Überprüfung der im Fach befindlichen Waren durch Sichtprüfung vorgenommen. Der Kostensatz hierfür beläuft sich auf 0,01 € je Position (vgl. Abbildung 106).
Abbildung 106: Kostensätze der Teilprozesse von Variante 2 des simulierten Kommissioniersystems

Variante 3 enthält ebenfalls die bereits in Alternative 1 dargestellte manuelle Identifikation des Artikels und die Quittierung der Entnahme. Zusätzlich erfolgt hier eine Überprüfung der Artikel auf Zustands- und Typfehler, deren Kosten sich auf 0,05 € je Entnahmeeinheit belaufen (vgl. Abbildung 107).
Nachweis der Wirtschaftlichkeit

Teilprozesse Kommisionier-/Prüfprozess Bezugsgröße Kostensatz je ME
Auftragsannahme K Auftrag 0,30 €
Ablesen der Auftragsposition K Position 0,03 €
Weg festlegen K Position 0,02 €
Fortbewegung eindimensional man. K Position 0,20 €
Identifikation des Bereitstellortes man. K Position 0,02 €
Identifikation des Artikels man. P Position 0,03 €
Identifikation der Verpackungseinheit man. K Position 0,02 €
Entnahme K Einheit 0,04 €
Überprüfung der Artikel auf Zustands- und Typfehler P Einheit 0,05 €
Quittierung der Entnahme P Position 0,02 €
Abgabe (Versand) K Auftrag 0,40 €

Fehlerfolgekosten intern / extern Bezugsgröße Kostensatz je ME
Nacharbeit intern Fehlerhafter Auftrag 9,50 €
Retoure extern Fehlerhafter Auftrag 30,00 €

Abbildung 107: Kostensätze der Teilprozesse von Variante 3 des simulierten Kommissioniersystems

Variante 4: Identifikation des Artikels (mit Barcode-Scanner) und Quittierung der Entnahme (Sichtprüfung)

<table>
<thead>
<tr>
<th>Teilprozesse</th>
<th>Kostensatz je ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auftragsannahme</td>
<td>0,30 €</td>
</tr>
<tr>
<td>Ablese- und Auftragsposition</td>
<td>0,03 €</td>
</tr>
<tr>
<td>Weg festlegen</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Fortbewegung eindimensional man.</td>
<td>0,20 €</td>
</tr>
<tr>
<td>Identifikation des Bereitstellortes man.</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Identifikation des Artikels (scannen)</td>
<td>0,07 €</td>
</tr>
<tr>
<td>Identifikation der Verpackungseinheit man.</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Entnahme</td>
<td>0,04 €</td>
</tr>
<tr>
<td>Quittierung der Entnahme</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Abgabe (Versand)</td>
<td>0,40 €</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fehlerfolgekosten</th>
<th>Kostensatz je ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>intern / extern</td>
<td></td>
</tr>
<tr>
<td>Nacharbeit</td>
<td>9,50 €</td>
</tr>
<tr>
<td>Retoure</td>
<td>30,00 €</td>
</tr>
</tbody>
</table>

Variante 5: Manuelle Identifikation des Artikels (Sichtprüfung), Quittierung der Entnahme (Sichtprüfung) und Prüfung des gesamten Auftrags (mit Barcode-Scanner)

<table>
<thead>
<tr>
<th>Teilprozesse</th>
<th>Kostensatz je ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auftragsannahme</td>
<td>0,30 €</td>
</tr>
<tr>
<td>Ablese- und Auftragsposition</td>
<td>0,03 €</td>
</tr>
<tr>
<td>Weg festlegen</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Fortbewegung eindimensional man.</td>
<td>0,20 €</td>
</tr>
<tr>
<td>Identifikation des Bereitstellortes man.</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Identifikation des Artikels man.</td>
<td>0,03 €</td>
</tr>
<tr>
<td>Identifikation der Verpackungseinheit man.</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Entnahme</td>
<td>0,04 €</td>
</tr>
<tr>
<td>Quittierung der Entnahme</td>
<td>0,02 €</td>
</tr>
<tr>
<td>Prüfung des gesamten Auftrags</td>
<td>3,40 €</td>
</tr>
<tr>
<td>Abgabe (Versand)</td>
<td>0,40 €</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fehlerfolgekosten</th>
<th>Kostensatz je ME</th>
</tr>
</thead>
<tbody>
<tr>
<td>intern / extern</td>
<td></td>
</tr>
<tr>
<td>Nacharbeit</td>
<td>9,50 €</td>
</tr>
<tr>
<td>Retoure</td>
<td>30,00 €</td>
</tr>
</tbody>
</table>

Abbildung 108: Kostensätze der Teilprozesse von Variante 4 des simulierten Kommissioniersystems

Die hier dargestellten Kostensätze aller Teilprozesse der Kommissionierung und Prüfung sowie der Nacharbeit und der Retourenabwicklung bilden die Grundlage für die Ermittlung der jährlichen Gesamtkosten als wesentliche Kenngröße zur Beurteilung der Wirtschaftlichkeit der simulierten Varianten, welche im Folgenden vorgenommen wird.

9.5 Wirtschaftlichkeit

Folgende Kostenaspekte werden bei der Wirtschaftlichkeitsbetrachtung der verschiedenen Alternativen berücksichtigt:

- Kommissionierkosten pro Jahr
- Prüfkosten pro Jahr
- Kosten für die Nacharbeit pro Jahr
- Kosten der Retourenabwicklung pro Jahr

Neben den jährlichen Gesamtkosten sind jedoch auch nicht monetär bewertbare Aspekte wie die Kundenzufriedenheit zu berücksichtigen. Daher ist die Kommissionierqualität, d. h. hier die auftragsbezogene Fehlerquote, ein wesentlicher
Nachweis der Wirtschaftlichkeit

Faktor für die Beurteilung der Wirtschaftlichkeit. Von dem Anteil fehlerhafter Aufträge ist es abhängig, wie viele Kunden unzufrieden mit der erbrachten Leistung sind, wodurch u. U. zukünftige Umsatzeinbußen entstehen.

Die Kosten und Fehlerquoten der einzelnen Varianten als Grundlage für die Wirtschaftlichkeitsbetrachtung sind zusammengefasst in Abbildung 110 dargestellt.

<table>
<thead>
<tr>
<th>simulierte Varianten</th>
<th>Simulationsergebnisse</th>
<th>Kostenvergleich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aufträge mit internen Fehlern pro Jahr</td>
<td>Aufträge mit externen Fehlern pro Jahr</td>
</tr>
<tr>
<td>keine Prüfung</td>
<td>0</td>
<td>6.006</td>
</tr>
<tr>
<td>1</td>
<td>3.186</td>
<td>2.820</td>
</tr>
<tr>
<td>2</td>
<td>4.004</td>
<td>2.002</td>
</tr>
<tr>
<td>3</td>
<td>4.403</td>
<td>1.603</td>
</tr>
<tr>
<td>4</td>
<td>5.004</td>
<td>1.002</td>
</tr>
<tr>
<td>5</td>
<td>5.605</td>
<td>401</td>
</tr>
</tbody>
</table>

Abbildung 110: Vergleich der simulierten Varianten hinsichtlich Qualität und Kosten

Es ist erkennbar, dass Variante 1, Variante 2 und Variante 4 zu einer Kosteneinsparung gegenüber der Kommissionierung ohne Prüfung führen, da die zusätzlichen Kosten für Prüfung und Nacharbeit niedriger sind als die Kosteneinsparung durch Reduzierung der Anzahl an Retouren. Im Gegensatz hierzu übersteigen die zusätzlichen Kosten für Prüfung und Nacharbeit bei den Varianten 3 und 5 die Kostensenkung durch Reduzierung der Retourenanzahl, so dass diese Varianten zu einer Erhöhung der Gesamtkosten führen.

Variante 3 ist unwirtschaftlicher als Variante 4, da sie sowohl zu höheren Gesamtkosten als auch zu einer höheren auftragsbezogenen Fehlerquote führt. Da Variante 5 verglichen mit Variante 4 bei Reduzierung der Fehlerquote um 0,6 Prozentpunkte (entspricht rund 600 Aufträgen pro Jahr) zu erheblich höheren Kosten von jährlich über 290.000 € (entspricht ca. 50 %) führt, ist diese Alternative i. d. R. ebenfalls nicht wirtschaftlich. Der Vergleich von Variante 1 und Variante 2 zeigt, dass Variante 1 aufgrund der höheren Kosten bei höherer Fehlerquote eindeutig unwirtschaftlicher ist als Variante 2.

Beim Vergleich der beiden verbleibenden Varianten 2 und 4 ergibt sich, dass Variante 2 zwar jährlich um 6.500 € (rund 1 %) kostengünstiger ist als Variante 4, jedoch gleichzeitig zu einer um 1,0 Prozentpunkte höheren Fehlerquote (rund 1.000
Aufträge pro Jahr) führt. Da die Kostendifferenz vergleichsweise niedrig ist, während die Fehlerquoten erheblich voneinander abweichen, ist die Variante 4 als die wirtschaftlichste Alternative zu betrachten.

Um die Wirtschaftlichkeit der Simulation zu beurteilen, sind neben dem Vergleich der Variante 4 mit der Kommissionierung ohne Prüfung bezüglich der jährlichen Kosten und der auftragsbezogenen Fehlerkosten auch die einmaligen Implementierungskosten für die Simulation in Höhe von rund 3.000 € (vgl. Abschnitt 9.1) zu berücksichtigen. Bei jährlichen Einsparungen von mehr als 21.000 € bei Variante 4 gegenüber der Variante ohne Prüfung sind die initial anfallenden Implementierungskosten bereits nach rund 2 Monaten amortisiert, d. h. ab diesem Zeitpunkt führen die laufend eingesparten Kosten zu einer erheblichen Verbesserung der Wirtschaftlichkeit des Kommissioniersystems bei zeitgleicher Reduzierung der auftragsbezogenen Fehlerquote von 6 % auf 1 %. Somit ist für den exemplarisch dargestellten Fall der wirtschaftliche Nutzen hinreichend nachgewiesen. Dies deutet darauf hin, dass die Durchführung der Simulation von Qualitätsprüfungsstrategien zur Optimierung der Kommissionierqualität insgesamt zu einer Verbesserung der Wirtschaftlichkeit in kleinen und mittleren Unternehmen beiträgt.
Literaturverzeichnis

Arnold 2004

Baumgarten und Wiegand 1997

Becker und Rügen 2004

Becks 1993

Becks 1998

Bichler und Schröter 2004

Bosch 1998

Braun 1999

Brauser 1990a

Brauser 1990b

Brauser 1992

Bubb 1990

Bubb und Albers 1992

Bubb und Schmidtke 1993
Bubb 2001

Crostack 2002

Crostack 2003

Crostack 2003a

Crostack 2004
Crostack 2004b

Crostack 2004c

Crostack 2005

Crostack 2005a

Dahms 2002

Diamond Phoenix 2005
Diamond Phoenix: DirectPick™ Voice-Directed Picking.
www-Dokument vom 08.07.2005:
DIN 25 424 1981

DIN 25 448 1980

DIN 55 350 1987

DIN 55350 1995

DIN 8402 1995

Dörfel und Reichart und Zimolong 1992

Dörfel und Reichart 1992
DGQ 1985

Ebeling 2001

Eck 2002

Evans 1998

Fahrenkrug 2002

Fischer 1994

Gabler Wirtschaftslexikon 2000
Globus 2005
Globus Logistik und Service GmbH: Zukunft Pick-by-voice hat begonnen
www-Dokument vom 23.05.2005:
http://www.jungheinrich.ch/referenzglobus_ch_de.html

Grünz und Mesenhöller 2001
Grünz, L.; Mesenhöller, E.: Retouren liefern Informationen. In: Logistik Heute
(2001), Nr.11, S. 42-43.

Grünz und Mesenhöller 2001[a]
Grünz, L.; Mesenhöller; E.: Protokolldaten für den KVP. In: Logistik Heute
(2001), Nr.12, S. 48-49.

Gudehus 2000a

Gudehus 2000b

Gudehus 2004

Hacker 1986
Arbeitspsychologie – Psychische Regulation von Arbeitstätigkeiten, Schriften

Hartmann 1993
Hartmann, E.: Einfluss der Arbeitsumwelt auf den Menschen: Beleuchtung. In:
211.
Heinz und Wichmann 1993

Heinz u. a. 1997

Heinz und Menk 1997

Heinz und Lolling 2001

Heinz und Wesselmann 2001

Heinz u.a. 2003

Helms 1980
Heptner 2003

Hering 1996

Joeris 2002

Joeris 2002 [a]

Jünemann 1989

Kamiske und Brauer 1999

KBS 2005

KBS Industrielektronik GmbH: www-Dokument vom 09.07.2005:
http://www.kbs-gmh.de/index.php

Kersten 1999

Kirwan 1994

Koch 2002

Krumm 2002

Kuhn und Pielok und Sümpelmann 1992

Lasner 2005

Lebelt 2001

Logim 2005
Logistics Information Management: Pick-by-voice
www-Dokument vom 23.05.2005:
Logosys 2005
Logosys case study: Prozesse beschleunigt und Fehlerquote reduziert
www-Dokument vom 23.05.2005:
http://www.zetes.com/elink/05Q2/germany/voice-picking.htm

Lolling 2003

Mackowiak und Goldscheid 2005
Mackowiak, J.; Goldscheid, C.: Ganzheitliche Bewertung und Optimierung manueller Arbeitsplätze in Kommissioniersystemen. AiF-Schlussbericht, AiF-Vorhaben-Nr. 13904, Universität Dortmund, 2005

Mayer 2003

Menk 1998

Miebach 1997

MTM 2000a
MTM 2000b

MTM o. J.
MTM-Logistikdaten: Transport und Handling. Hamburg: Deutsche MTM-Vereinigung e. V., o. J.

Nürnberg 1999

Mues 2003

Müller 1998
Müller, A.: Gemeinkostenmanagement. 2. Aufl. Wiesbaden: Gabler, 199

Nusswald 1998

Ostermann 2003
Park 1997

Pfeifer 2001

Pfohl 1996

Pieper 1982

Potyka 1994

Reckenfelderbäumer 1994

REFA 1993

Reichart 1989

Reichart 1992

Reichart 2001

Richard 1999

Rigby 1970

Kelton 2002
Rogers und Tibben-Lembke 1999

Sasse 2002

Schindele 1996

Schmidtke 1993

Schulte 1999

Seebauer 2001

Slomka 1990
Stockinger 2001

Sträter 1997

Swain und Guttmann 1983

Ten Hompel 2003

Ten Hompel und Schmidt 2003

Tietjen und Müller 2003

Trevilock 2002
Vahlen Lexikon 1997

VDI 4405 2003

VDI 3590 1994

VDI 3633 1996

Verstaen 2005

Warnecke u. a. 1996

Westkämper und Sautter 1998

Wichmann 1997

Wildemann 1994

Winz 1996

Work-Factor 1996

Zenner 1996

Zimolong 1990